Skip to main content

Classical Models of Senile Osteoporosis

  • Chapter
  • First Online:
Osteoporosis Research
  • 959 Accesses

Abstract

Most vertebrates exhibit age-related decline in physiological function, particularly in locomotion. Loss of muscle volume and bone mass in late life is a hallmark of aging and resembles tissue obsolescence caused by disuse. However, some human populations lose bone mass more rapidly than would be predicted by normal aging. These individuals are diagnosed as having senile osteoporosis, one of the most prevalent geriatric disorders and one that seriously decreases quality of life in the elderly. As noted throughout this book, mice and rats are the most frequently used models to study osteoporosis, its treatment and prevention, and concomitant pathogenesis. Both mice and rats have an approximately 3-year lifespan. Bone mass peaks within the first quarter of life and then declines with age. This chapter describes age-related bone loss in laboratory rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferguson VL, Ayers RA, Bateman TA, Simske SJ. Bone development and age-related bone loss in male C57BL/6J mice. Bone. 2003;33(3):387-398.

    Article  PubMed  Google Scholar 

  2. Glatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res. 2007;22(8):1197-1207.

    Article  PubMed  Google Scholar 

  3. Halloran BP, Ferguson VL, Simske SJ, Burghardt A, Venton LL, Majumdar S. Changes in bone structure and mass with advancing age in the male C57BL/6J mouse. J Bone Miner Res. 2002;17(6):1044-1050.

    Article  PubMed  Google Scholar 

  4. Hamrick MW, Ding KH, Pennington C, et al. Age-related loss of muscle mass and bone strength in mice is associated with a decline in physical activity and serum leptin. Bone. 2006;39(4):845-853.

    Article  PubMed  CAS  Google Scholar 

  5. Danilovich N, Sairam MR. Haploinsufficiency of the follicle-stimulating hormone receptor accelerates oocyte loss inducing early reproductive senescence and biological aging in mice. Biol Reprod. 2002;67(2):361-369.

    Article  PubMed  CAS  Google Scholar 

  6. Hirose S, Li M, Kojima T, et al. A histological assessment on the distribution of the osteocytic lacunar canalicular system using silver staining. J Bone Miner Metab. 2007;25(6):374-382.

    Article  PubMed  Google Scholar 

  7. Cao J, Venton L, Sakata T, Halloran BP. Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res. 2003;18(2):270-277.

    Article  PubMed  CAS  Google Scholar 

  8. Cao JJ, Wronski TJ, Iwaniec U, et al. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Miner Res. 2005;20(9):1659-1668.

    Article  PubMed  CAS  Google Scholar 

  9. Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008; 29(5):535-559.

    Article  PubMed  CAS  Google Scholar 

  10. Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone. 1996;19(1 Suppl):1S-12S.

    Article  PubMed  CAS  Google Scholar 

  11. Cao JJ, Kurimoto P, Boudignon B, Rosen C, Lima F, Halloran BP. Aging impairs IGF-I receptor activation and induces skeletal resistance to IGF-I. J Bone Miner Res. 2007;22(8): 1271-1279.

    Article  PubMed  CAS  Google Scholar 

  12. Hodsman AB, Bauer DC, Dempster DW, et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev. 2005;26(5):688-703.

    Article  PubMed  CAS  Google Scholar 

  13. Knopp E, Troiano N, Bouxsein M, et al. The effect of aging on the skeletal response to intermittent treatment with parathyroid hormone. Endocrinology. 2005;146(4):1983-1990.

    Article  PubMed  CAS  Google Scholar 

  14. Srinivasan S, Agans SC, King KA, Moy NY, Poliachik SL, Gross TS. Enabling bone formation in the aged skeleton via rest-inserted mechanical loading. Bone. 2003;33(6):946-955.

    Article  PubMed  Google Scholar 

  15. Takeda T, Hosokawa M, Takeshita S, et al. A new murine model of accelerated senescence. Mech Ageing Dev. 1981; 17(2):183-194.

    Article  PubMed  CAS  Google Scholar 

  16. Matsushita M, Tsuboyama T, Kasai R, et al. Age-related changes in bone mass in the senescence-accelerated mouse (SAM). SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis. Am J Pathol. 1986;125(2):276-283.

    PubMed  CAS  Google Scholar 

  17. Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC. Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest. 1996;97(7):1732-1740.

    Article  PubMed  CAS  Google Scholar 

  18. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. The effects of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage. Endocrinology. 1997;138(9):4013-4021.

    Article  PubMed  CAS  Google Scholar 

  19. Kodama Y, Takeuchi Y, Suzawa M, et al. Reduced expression of interleukin-11 in bone marrow stromal cells of senescence-accelerated mice (SAMP6): relationship to osteopenia with enhanced adipogenesis. J Bone Miner Res. 1998; 13(9):1370-1377.

    Article  PubMed  CAS  Google Scholar 

  20. Kajkenova O, Lecka-Czernik B, Gubrij I, et al. Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner Res. 1997; 12(11):1772-1779.

    Article  PubMed  CAS  Google Scholar 

  21. Silva MJ, Brodt MD. Mechanical stimulation of bone formation is normal in the SAMP6 mouse. Calcif Tissue Int. 2008;82(6):489-497.

    Article  PubMed  CAS  Google Scholar 

  22. Silva MJ, Brodt MD, Ettner SL. Long bones from the senescence accelerated mouse SAMP6 have increased size but reduced whole-bone strength and resistance to fracture. J Bone Miner Res. 2002;17(9):1597-1603.

    Article  PubMed  Google Scholar 

  23. Silva MJ, Brodt MD, Ko M, Abu-Amer Y. Impaired marrow osteogenesis is associated with reduced endocortical bone formation but does not impair periosteal bone formation in long bones of SAMP6 mice. J Bone Miner Res. 2005; 20(3):419-427.

    Article  PubMed  Google Scholar 

  24. Ichioka N, Inaba M, Kushida T, et al. Prevention of senile osteoporosis in SAMP6 mice by intrabone marrow injection of allogeneic bone marrow cells. Stem Cells. 2002;20(6):542-551.

    Article  PubMed  Google Scholar 

  25. Takada K, Inaba M, Ichioka N, et al. Treatment of senile osteoporosis in SAMP6 mice by intra-bone marrow injection of allogeneic bone marrow cells. Stem Cells. 2006; 24(2):399-405.

    Article  PubMed  Google Scholar 

  26. Ueda Y, Inaba M, Takada K, et al. Induction of senile osteoporosis in normal mice by intra-bone marrow-bone marrow transplantation from osteoporosis-prone mice. Stem Cells. 2007;25(6):1356-1363.

    Article  PubMed  CAS  Google Scholar 

  27. Nakanishi R, Shimizu M, Mori M, et al. Secreted frizzled-related protein 4 is a negative regulator of peak BMD in SAMP6 mice. J Bone Miner Res. 2006;21(11):1713-1721.

    Article  PubMed  CAS  Google Scholar 

  28. Shimizu M, Higuchi K, Kasai S, et al. Chromosome 13 locus, Pbd2, regulates bone density in mice. J Bone Miner Res. 2001;16(11):1972-1982.

    Article  PubMed  CAS  Google Scholar 

  29. Shimizu M, Higuchi K, Bennett B, et al. Identification of peak bone mass QTL in a spontaneously osteoporotic mouse strain. Mamm Genome. 1999;10(2):81-87.

    Article  PubMed  CAS  Google Scholar 

  30. Banu J, Wang L, Kalu DN. Age-related changes in bone mineral content and density in intact male F344 rats. Bone. 2002;30(1):125-130.

    Article  PubMed  CAS  Google Scholar 

  31. Kiebzak GM, Smith R, Gundberg CC, Howe JC, Sacktor B. Bone status of senescent male rats: chemical, morphometric, and mechanical analysis. J Bone Miner Res. 1988;3(1):37-45.

    Article  PubMed  CAS  Google Scholar 

  32. Kiebzak GM, Smith R, Howe JC, Gundberg CM, Sacktor B. Bone status of senescent female rats: chemical, morphometric, and biomechanical analyses. J Bone Miner Res. 1988; 3(4):439-446.

    Article  PubMed  CAS  Google Scholar 

  33. Turner CH, Takano Y, Owan I. Aging changes mechanical loading thresholds for bone formation in rats. J Bone Miner Res. 1995;10(10):1544-1549.

    Article  PubMed  CAS  Google Scholar 

  34. Wang L, Banu J, McMahan CA, Kalu DN. Male rodent model of age-related bone loss in men. Bone. 2001;29(2):141-148.

    Article  PubMed  CAS  Google Scholar 

  35. Barbier A, Martel C, de Vernejoul MC, et al. The visualization and evaluation of bone architecture in the rat using three-dimensional X-ray microcomputed tomography. J Bone Miner Metab. 1999;17(1):37-44.

    Article  PubMed  CAS  Google Scholar 

  36. Prisby RD, Ramsey MW, Behnke BJ, et al. Aging reduces skeletal blood flow, endothelium-dependent vasodilation, and NO bioavailability in rats. J Bone Miner Res. 2007; 22(8):1280-1288.

    Article  PubMed  CAS  Google Scholar 

  37. Alliot J, Boghossian S, Jourdan D, et al. The LOU/c/jall rat as an animal model of healthy aging? J Gerontol A Biol Sci Med Sci. 2002;57(8):B312-B320.

    PubMed  Google Scholar 

  38. Duque G, Rivas D, Li W, et al. Age-related bone loss in the LOU/c rat model of healthy ageing. Exp Gerontol. 2009; 44(3):183-189.

    Article  PubMed  Google Scholar 

  39. Mair W, Dillin A. Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem. 2008;77:727-754.

    Article  PubMed  CAS  Google Scholar 

  40. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273(5271):59-63.

    Article  PubMed  CAS  Google Scholar 

  41. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr. 1935;10:63-79.

    CAS  Google Scholar 

  42. Masoro EJ. Overview of caloric restriction and ageing. Mech Ageing Dev. 2005;126(9):913-922.

    Article  PubMed  CAS  Google Scholar 

  43. Weindruch R, Sohal RS. Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med. 1997;337(14):986-994.

    Article  PubMed  CAS  Google Scholar 

  44. Kalu DN, Hardin RH, Cockerham R, Yu BP. Aging and dietary modulation of rat skeleton and parathyroid hormone. Endocrinology. 1984;115(4):1239-1247.

    Article  PubMed  CAS  Google Scholar 

  45. Sanderson JP, Binkley N, Roecker EB, et al. Influence of fat intake and caloric restriction on bone in aging male rats. J Gerontol A Biol Sci Med Sci. 1997;52(1):B20-B25.

    PubMed  CAS  Google Scholar 

  46. Brochmann EJ, Duarte ME, Zaidi HA, Murray SS. Effects of dietary restriction on total body, femoral, and vertebral bone in SENCAR, C57BL/6, and DBA/2 mice. Metabolism. 2003;52(10):1265-1273.

    Article  PubMed  CAS  Google Scholar 

  47. Hamrick MW, Ding KH, Ponnala S, Ferrari SL, Isales CM. Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J Bone Miner Res. 2008;23(6):870-878.

    Article  PubMed  CAS  Google Scholar 

  48. Tatsumi S, Ito M, Asaba Y, Tsutsumi K, Ikeda K. Life-long caloric restriction reveals biphasic and dimorphic effects on bone metabolism in rodents. Endocrinology. 2008;149(2): 634-641.

    Article  PubMed  CAS  Google Scholar 

  49. Katewa SD, Kapahi P. Dietary restriction and aging, 2009. Aging Cell. 2010;9(2):105-112.

    Article  PubMed  CAS  Google Scholar 

  50. Ambrogini E, Almeida M, Martin-Millan M, et al. FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab. 2010;11(2):136-146.

    Article  PubMed  CAS  Google Scholar 

  51. Rached MT, Kode A, Xu L, et al. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 2010;11(2):147-160.

    Article  PubMed  CAS  Google Scholar 

  52. Rached MT, Kode A, Silva BC, et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest. 2010;120(1):357-368.

    Article  PubMed  CAS  Google Scholar 

  53. Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514-520.

    Article  PubMed  CAS  Google Scholar 

  54. Manolagas SC, Almeida M. Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol. 2007;21(11):2605-2614.

    Article  PubMed  CAS  Google Scholar 

  55. Begg SK, Bertoncello I. The hematopoietic deficiencies in osteopetrotic (op/op) mice are not permanent, but progressively correct with age. Exp Hematol. 1993;21(4):493-495.

    PubMed  CAS  Google Scholar 

  56. Blalock EM, Chen KC, Sharrow K, et al. Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci. 2003;23(9):3807-3819.

    PubMed  CAS  Google Scholar 

  57. Lee CK, Klopp RG, Weindruch R, Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science. 1999;285(5432):1390-1393.

    Article  PubMed  CAS  Google Scholar 

  58. Melov S, Hubbard A. Microarrays as a tool to investigate the biology of aging: a retrospective and a look to the future. Sci Aging Knowl Environ. 2004;2004(42):re7.

    Article  Google Scholar 

  59. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99-118.

    Article  PubMed  CAS  Google Scholar 

  60. Gosselin K, Abbadie C. Involvement of Rel/NF-kappa B transcription factors in senescence. Exp Gerontol. 2003; 38(11–12):1271-1283.

    Article  PubMed  CAS  Google Scholar 

  61. Pasparakis M. Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol. 2009;9(11):778-788.

    Article  PubMed  CAS  Google Scholar 

  62. Sarkar D, Fisher PB. Molecular mechanisms of aging-­associated inflammation. Cancer Lett. 2006;236(1):13-23.

    Article  PubMed  CAS  Google Scholar 

  63. Novack DV, Teitelbaum SL. The osteoclast: friend or foe? Annu Rev Pathol. 2008;3:457-484.

    Article  PubMed  CAS  Google Scholar 

  64. Hwang CS, Loftus TM, Mandrup S, Lane MD. Adipocyte differentiation and leptin expression. Annu Rev Cell Dev Biol. 1997;13:231-259.

    Article  PubMed  CAS  Google Scholar 

  65. Moller DE, Kaufman KD. Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med. 2005;56:45-62.

    Article  PubMed  CAS  Google Scholar 

  66. Spiegelman BM, Hotamisligil GS. Through thick and thin: wasting, obesity, and TNF alpha. Cell. 1993;73(4):625-627.

    Article  PubMed  CAS  Google Scholar 

  67. Tracey KJ, Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med. 1994;45:­491-503.

    Article  PubMed  CAS  Google Scholar 

  68. Chambers TJ. Regulation of the differentiation and function of osteoclasts. J Pathol. 2000;192(1):4-13.

    Article  PubMed  CAS  Google Scholar 

  69. Xing L, Schwarz EM, Boyce BF. Osteoclast precursors, RANKL/RANK, and immunology. Immunol Rev. 2005; 208:19-29.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Watanabe, K. (2011). Classical Models of Senile Osteoporosis. In: Duque, G., Watanabe, K. (eds) Osteoporosis Research. Springer, London. https://doi.org/10.1007/978-0-85729-293-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-293-3_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-292-6

  • Online ISBN: 978-0-85729-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics