Decentralized Control of Traffic Networks

  • Magdi S. Mahmoud


In this chapter, novel centralized and decentralized routing control strategies based on minimization of the worst-case queuing length are proposed. The centralized routing problem is formulated as an \(\mathcal{H}_{\infty}\) optimal control problem to achieve a robust routing performance in presence of multiple and unknown fast time-varying network delays. Unlike similar previous work in the literature the delays in the queuing model are assumed to be unknown and time-varying. A Linear Matrix Inequality (LMI) constraint is obtained to design a delay-dependent \(\mathcal{H}_{\infty}\) controller. The physical constraints that are present in the network are then expressed as LMI feasibility conditions. Our proposed centralized routing scheme is then reformulated in a decentralized frame work. This modification yields an algorithm that obtains the “fastest route”, increases the robustness against multiple unknown time-varying delays, and enhances the scalability of the algorithm to large scale traffic networks. Simulation results are presented to illustrate and demonstrate the effectiveness and capabilities of our proposed novel dynamic routing strategies.


Destination Node Traffic Flow Queue Length Linear Matrix Inequality Traffic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdollahi, F. and K. Khorasani, “A Novel \({\mathcal{H}}_{\infty}\) Control Strategy for Design of a Robust Dynamic Routing Algorithm in Traffic Networks”, IEEE J. Sel. Areas Commun., vol. 26, no. 4, 2008, pp. 706–718. CrossRefGoogle Scholar
  2. 2.
    Akkaya, K. and M. Younis, “Energy-Aware Routing to a Mobile Gateway in Wireless Sensor Networks”, Proc. IEEE Communications Society Globecom Workshops, 2004, pp. 16–21. Google Scholar
  3. 3.
    Anderson, E. J. and T. E. Anderson, “On the Stability of Adaptive Routing in the Presence of Congestion Control”, Proc. 23rd IEEE Int. Conf. Computer Communications, INFOCOM, 2003, pp. 948–958. Google Scholar
  4. 4.
    Ataslar, B. and A. Iftar, “Decentralized Routing Controller Design Using Overlapping Decompositions”, Int. J. Control, vol. 72, 1999, pp. 1175–1192. MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Baglietto, M., T. Parisini and R. Zoppoli, “Distributed-Information Neural Control: The Case of Dynamic Routing in Traffic Networks”, IEEE Trans. Neural Netw., vol. 12, no. 3, 2001, pp. 485–502. CrossRefGoogle Scholar
  6. 6.
    Bertsekas, D. and J. Tsitsiklis, “Some Aspects of Parallel and Distributed Iterative Algorithms: A Survey”, Automatica, vol. 27, 1991, pp. 3–21. MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Berteskas, D. and R. Gallager, Data Networks (2nd ed.), Prentice-Hall, New York, 1992. Google Scholar
  8. 8.
    Chen, N., X. Zhang and W. Gui, “Robust Decentralized \({\mathcal{H}}_{\infty}\) Control of Multi-Channel Uncertain Time-Delay Systems: An LMI Approach”, Proc. IEEE Int. Conf. Mechatronics and Automation, June 2006. Google Scholar
  9. 9.
    Chen, L., S. H. Low, M. Chiang and J. C. Doyle, “Cross-Layer Congestion Control, Routing and Scheduling Design in Ad hoc Wireless Networks”, Proc. 25th IEEE Int. Conf. Computer Communications, INFOCOM, Apr. 2006, pp. 1–13. Google Scholar
  10. 10.
    Chen, L. and W. B. Heinzelman, “A Survey of Routing Protocols that Support QoS in Mobile Adhoc Networks”, IEEE Netw., vol. 21, no. 6, 2007, pp. 30–38. CrossRefGoogle Scholar
  11. 11.
    Ephremides, A., “The Routing Problem in Computer Networks”, Communications and Networks, Blake I. F. and H. V. Poor (Eds.), Springer, New York, 1986. Google Scholar
  12. 12.
    Gellager, R., “A Minimum Delay Routing Algorithm Using Distributed Computation”, IEEE Trans. Commun., vol. 25, 1997, pp. 73–85. CrossRefGoogle Scholar
  13. 13.
    Haddad, W. S. and V. S. Chellabiona, “Stability Theory for Nonnegative and Compartmental Dynamical Systems with Time Delay”, Proc. IEEE American Control Conference, 2004, pp. 1422–1427. Google Scholar
  14. 14.
    Iftar, A. and E. J. Davison, “A Decentralized Discrete-Time Controller for Dynamic Routing”, Int. J. Control, vol. 69, 1998, pp. 599–632. MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Iftar, A. and E. J. Davison, “Decentralized Control Strategies for Dynamic Routing”, Optim. Control Appl. Methods, vol. 23, no. 6, 2002, pp. 329–355. MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kelly, F. and Th. Voice, “Stability of End-to-End Algorithms for Joint Routing and Rate Control”, Comput. Commun. Rev., vol. 35, no. 2, 2005, pp. 5–12. CrossRefGoogle Scholar
  17. 17.
    Oulai, D., S. Chamberland and S. Pierre, “A New Routing-Based Admission Control for MPLS Networks”, IEEE Commun. Lett., vol. 11, no. 2, 2007, pp. 216–218. CrossRefGoogle Scholar
  18. 18.
    Kuznetsov, N. A. and V. N. Fetisov, “Robust Control of Information Networks”, Autom. Remote Control, vol. 66, no. 9, 2005, pp. 1440–l453. MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mahmoud, M. S., M. F. Hassan and M. G. Darwish, Large Scale Control Systems: Theories and Techniques, Dekker, New York, 1985. Google Scholar
  20. 20.
    Mahmoud, M. S. and M. Zribi, “Robust and \({\mathcal{H}}_{\infty}\) Stabilization of Interconnected Systems with Delays”, IEE Proc., Control Theory Appl., vol. 145, 1998, pp. 558–567. CrossRefGoogle Scholar
  21. 21.
    Mahmoud, M. S., Robust Control and Filtering for Time-Delay Systems, Dekker, New York, 2000. Google Scholar
  22. 22.
    Mahmoud, M. S., “Decentralized Stabilization of Interconnected Systems with Time-Varying Delays”, IEEE Trans. Autom. Control, vol. 54, no. 11, 2009, pp. 2663–2668. CrossRefGoogle Scholar
  23. 23.
    Mahmoud, M. S., “Decentralized Reliable Control of Interconnected Systems with Time-Varying Delays”, J. Optim. Theory Appl., vol. 143, no. 11, 2009, pp. 497–518. MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Mahmoud, M. S. and A. Y. Al-Rayyah, “Efficient Parameterization to Stability and Feedback Synthesis of Linear Time-Delay Systems”, IET Control Theory Appl., vol. 3, no. 8, 2009, pp. 1107–1118. MathSciNetCrossRefGoogle Scholar
  25. 25.
    McQuillan, J. M., I. Richer and E. C. Rosen, “The New Routing Algorithm for the ARPANET”, IEEE Trans. Commun., vol. 28, 1980, pp. 771–719. CrossRefGoogle Scholar
  26. 26.
    Meditch, J. S. and J. C. Mandojana, “A Decentralized Algorithm for Optimal Routing in Data-Communication”, Large Scale Syst., vol. 1, 1980, pp. 149–158. MathSciNetMATHGoogle Scholar
  27. 27.
    Moss, F. H. and A. Segal, “An Optimal Control Approach to Dynamic Routing in Networks”, IEEE Trans. Autom. Control, vol. 17, no. 2, 1982, pp. 327–339. Google Scholar
  28. 28.
    Neely, M. J., E. Modiano and Ch. E. Rohrs, “Dynamic Power Allocation and Routing for Time-Varying Wireless Networks”, IEEE J. Sel. Areas Commun., vol. 23, no. 1, 2005, pp. 89–103. CrossRefGoogle Scholar
  29. 29.
    Papachristodoulou, A., J. C. Doyle and S. H. Low, “Analysis of Nonlinear Delay Differential Equation Models of TCP/AQM Protocols Using Sums of Squares”, Proc. IEEE Conf. Decision and Control, Dec. 2004, pp. 4684–4689. Google Scholar
  30. 30.
    Sarachik, P. E. and U. Ozguner, “On Decentralized Dynamic Routing for Congested Traffic Networks”, IEEE Trans. Autom. Control, vol. 27, 1982, pp. 1233–1238. MATHCrossRefGoogle Scholar
  31. 31.
    Segal, A., “The Modeling of Adaptive Routing in Data-Communication Networks”, IEEE Trans. Commun. vol. 25, no. 1, 1977, pp. 85–95. CrossRefGoogle Scholar
  32. 32.
    Tran, D. A. and H. Raghavendra, “Congestion Adaptive Routing in Mobile Adhoc Networks”, IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 11, 2006, pp. 1294–1305. CrossRefGoogle Scholar
  33. 33.
    Tsitsiklis, J. and D. Bertsekas, “Distributed Asynchronous Optimal Routing in Data Networks”, IEEE Trans. Autom. Control, vol. 31, 1986, pp. 325–332. MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Tymes L., “Routing and Flow Control in TYMNET”, IEEE Trans. Commun., vol. 29, 1981, pp. 392–398. CrossRefGoogle Scholar
  35. 35.
    Vum, T.P., “The Design and Analysis of a Semi-Dynamic Deterministic Routing Rule”, IEEE Trans. Commun., vol. 29, 1981, pp. 498–504. CrossRefGoogle Scholar
  36. 36.
    Wang, Z. and F. Paganini, “Global Stability with Time-Delay of a Primal-Dual Congestion Control”, Proc. IEEE Conf. Decision and Control, 2003, pp. 3671–3676. Google Scholar
  37. 37.
    Xi, Y. and E. M. Yeh, “Optimal Capacity Allocation, Routing, and Congestion Control in Wireless Networks”, Proc. IEEE Int. Symp. Information Theory, July 2006, pp. 2511–2515. Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Systems EngineeringKing Fahd Univ. of Petroleum & MineralsDhahranSaudi Arabia

Personalised recommendations