Decentralized Quantized Control

  • Magdi S. Mahmoud


In this chapter, we examine the problem of decentralized quantized feedback stabilization for a class of linear interconnected systems. Both continuous-time and discrete-time systems are treated. In either case, the system has unknown-but-bounded couplings and interval delays. Two approaches have been addressed: the first approach incorporates typical quantizers (like uniform-type or logarithmic-type) and the second approach provides a generalized setting where the quantizer has arbitrary form that satisfies a quadratic inequality constraint. A decentralized quantized output-feedback controller is designed at the subsystem level to render the closed-loop system is delay-dependent asymptotically stable with guaranteed γ-level. Several special cases of interest are derived. We illustrate the theoretical developments by numerical simulations.


Packet Dropout Quadratic Inequality Subsystem Level Large Space Structure Couple Subsystem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baillieul, J., “Feedback Designs in Information-Based Control,” Proc. Stochastic Theory and Control Workshop, 2001, pp. 35–57. Google Scholar
  2. 2.
    Bakule, L., “Decentralized Control: An Overview”, Annu. Rev. Control, vol. 32, pp. 87–98, 2008. CrossRefGoogle Scholar
  3. 3.
    Bose, T., “Combined Effects of Overflow and Quantization in Fixed-Point Digital Filters”, Digit. Signal Process., vol. 4, no. 4, 1994, pp. 239–244. CrossRefGoogle Scholar
  4. 4.
    Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, 1994. MATHCrossRefGoogle Scholar
  5. 5.
    Brockett, R. W. and D. Liberzon, “Quantized Feedback Stabilization of Linear Systems”, IEEE Trans. Autom. Control, vol. 45, 2000, pp. 1279–1289. MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chen, N., G. Zhai, W. Gui, C. Yang and W. Liu, “Decentralized \({\mathcal{H}}_{\infty}\) Quantizers Design for Uncertain Interconnected Networked Systems”, IET Control Theory Appl., vol. 4, no. 2, 2010, pp. 177–185. MathSciNetCrossRefGoogle Scholar
  7. 7.
    Choi, H. H., “Sliding-Mode Output Feedback Control Design” IEEE Trans. Ind. Electron., vol. 55, no. 11, 2008, pp. 4047–4054. CrossRefGoogle Scholar
  8. 8.
    Delchamps, D. F., “Stabilizing a Linear System with Quantized State Feedback”, IEEE Trans. Autom. Control, vol. 35, 1990, pp. 916–924. MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Elia, N. and K. Mitter, “Stabilization of Linear Systems with Limited Information”, IEEE Trans. Autom. Control, vol. 46, no. 9, 2001, pp. 1384–1400, MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Erickson K. T. and A. N. Michel, “Stability Analysis of Fixed-Point Digital Filters Using Computer Generated Lyapunov Functions—Part I: Direct Form and Coupled Form Filters”, IEEE Trans. Circuits Syst., vol. 32, no. 2, 1985, pp. 113–132. MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Fridman, E. and M. Dambrine, “Control Under Quantization, Saturation and Delay: An LMI Approach”, Automatica, vol. 45, no. 10, 2009. Google Scholar
  12. 12.
    Fu, M. and L. Xie, “The Sector Bound Approach to Quantized Feedback Control”, IEEE Trans. Autom. Control, vol. 50, 2005, pp. 1698–1711. MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fu, M. and C. E. deSouza, “State Estimation for Linear Discrete-Time Systems Using Quantized Measurements”, Automatica, vol. 45, no. 12, 2009, pp. 2937–2945. MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    He Y., M. Wu and J. H. She, “Delay-Dependent Exponential Stability of Delayed Neural Networks with Time-Varying Delay”, IEEE Trans. Circuits Syst. II, Express Briefs, vol. 53, no. 7, 2006, pp. 553–557. CrossRefGoogle Scholar
  15. 15.
    He, Y., M. Wu and Q. L. Han, “Delay-Dependent \({\mathcal{H}}_{\infty}\) Control of Linear Discrete-Time Systems with an Interval-Like Time-Varying Delay”, Int. J. Inf. Syst. Sci., vol. 39, no. 3, 2008, pp. 427–436. MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hirata, M. and T. Kidokoro, “Servo Performance Enhancement of Motion System via a Quantization Error Estimation Method—Introduction to Nanoscale Servo Control”, IEEE Trans. Ind. Electron., vol. 56, no. 10, 2009, pp. 3817–3824. CrossRefGoogle Scholar
  17. 17.
    Ishii, H. and B. Francis, Limited Data Rate in Control Systems with Networks, Springer, Berlin, 2002. MATHGoogle Scholar
  18. 18.
    Kandanvli, V. K. R. and H. Kar, “An LMI Condition for Robust Stability of Discrete-Time State-Delayed Systems Using Quantization/Overflow Nonlinearities”, Signal Process., vol. 89, no. 11, 2009, pp. 2092–2102. MATHCrossRefGoogle Scholar
  19. 19.
    Liberzon, D., “Nonlinear Stabilization by Hybrid Quantized Feedback”, Proc. 3rd Int. Workshop on Hybrid Systems: Computation and Control, Pittsburgh, 2000, pp. 243–257. CrossRefGoogle Scholar
  20. 20.
    Liberzon, D., Switching in Systems and Control, Birkhäuser, Boston, 2003. MATHCrossRefGoogle Scholar
  21. 21.
    Liberzon, D., “Hybrid Feedback Stabilization of Systems with Quantized Signals”, Automatica, vol. 39, 2003, pp. 1543–1554. MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Mahmoud, M. S., Computer-Operated Systems Control, Dekker, New York, 1991. Google Scholar
  23. 23.
    Mahmoud, M. S. and N. F. Al-Muthairi, “Design of Robust Controllers for Time-Delay Systems”, IEEE Trans. Autom. Control, vol. AC-39, 1994, pp. 995–999. MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mahmoud, M. S. and S. Bingulac, “Robust Design of Stabilizing Controllers for Interconnected Time-Delay Systems”, Automatica, vol. 34, 1998, pp. 795–800. MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Mahmoud, M. S. and M. Zribi, “Robust and \({\mathcal{H}}_{\infty}\) Stabilization of Interconnected Systems with Delays”, IEE Proc., Control Theory Appl., vol. 145, 1998, pp. 558–567. CrossRefGoogle Scholar
  26. 26.
    Mahmoud, M. S., Robust Control and Filtering for Time-Delay Systems, Dekker, New York, 2000. MATHGoogle Scholar
  27. 27.
    Mahmoud, M. S., “Decentralized Stabilization of Interconnected Systems with Time-Varying Delays”, IEEE Trans. Autom. Control, vol. 54, no. 11, 2009, pp. 2663–2668. CrossRefGoogle Scholar
  28. 28.
    Mahmoud, M. S., “Decentralized Reliable Control of Interconnected Systems with Time-Varying Delays”, J. Optim. Theory Appl., vol. 143, no. 11, 2009, pp. 4976–518. Google Scholar
  29. 29.
    Matsumoto, Y., G. Zhai and Y. Mi, “Stabilization of Discrete-Time LTI Systems by Hybrid Quantized Output Feedback”, Preprints of the 46th Japan Joint Automatic Control Conference, Okayama, 2003, pp. 799–802. Google Scholar
  30. 30.
    Siljak, D. D., Decentralized Control of Complex Systems, Academic Press, San Diego, 1991. Google Scholar
  31. 31.
    Stankovic, S. S., D. M. Stipanovic and D. D. Siljak, “Decentralized Dynamic Output Feedback for Robust Stabilization of a Class of Nonlinear Interconnected Systems”, Automatica, vol. 43, 2007, pp. 861–867. MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Tatikonda, S. and S. Mitter, “Control Under Communication Constraints”, IEEE Trans. Autom. Control, vol. 49, no. 7, 2004, pp. 1056–1068. MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhai, H., Y. Matsumoto, X. Chen and Y. Mi, “Hybrid Stabilization of Linear Time-Invariant Systems with Two Quantizers”, Proc. 2004 IEEE Int. Symposium on Intelligent Control, Taipei, 2004, pp. 305–309. Google Scholar
  34. 34.
    Zhai, H., Y. Mi, J. Imae and T. Kobayashi, “Design of \({\mathcal{H}}_{\infty}\) Feedback Control Systems with Quantized Signals”, Preprints of the 16th IFAC World Congress, Prague, 2005, Paper code: Fr-M17-TO/1. Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Systems EngineeringKing Fahd Univ. of Petroleum & MineralsDhahranSaudi Arabia

Personalised recommendations