Decentralized Systems with Multi-controllers

  • Magdi S. Mahmoud


This chapter looks at particular classes of decentralized systems that incorporate multiple controllers in their basic operation. Three distinct types of these systems are identified: multi-channel time-delay systems, interconnected networked systems and discrete-systems with saturating controllers. In the first two types, the mathematical analysis treats initially with interconnected time-delay systems to develop general delay-dependent stability and stabilization results. Then, several interesting cases are derived. The subsystems are subjected to convex-bounded parametric uncertainties and/or additive feedback gain perturbations. The third type is concerned with stabilization decentralized linear saturating plants. The basic tool is the construction use of appropriate Lyapunov-Krasovskii functionals. We characterize decentralized linear matrix inequalities (LMIs)-based conditions. Resilient decentralized dynamic output-feedback stabilization schemes are designed such that the family of closed-loop feedback subsystems enjoys the delay-dependent asymptotic stability with a prescribed γ-level \({\mathcal{L}}_{2}\) gain for each subsystem.


Network Control System Interconnected System Open Unit Disc Actuator Saturation Linear Time Invariant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bakule, L. and J. Lunze, “Decentralized Design of Feedback Control for Large-Scale Systems”, Kybernetika, vol. 24, 1988, pp. 1–100. MathSciNetGoogle Scholar
  2. 2.
    Bakule, L., “Complexity-Reduced Guaranteed Cost Control Design for Delayed Uncertain Symmetrically Connected Systems”, Proc. American Control Conference, 2005, pp. 2590–2595. Google Scholar
  3. 3.
    Bakule, L., “Decentralized Control: An Overview”, Annu. Rev. Control, vol. 32, 2008, pp. 87–98. CrossRefGoogle Scholar
  4. 4.
    Benzaouia, A., E. De Santis, P. Caravani and N. Daraoui, “Constrained Control of Switching Systems: A Positive Invariant Approach”, Int. J. Control, vol. 80, 2007, pp. 1379–1387. MATHCrossRefGoogle Scholar
  5. 5.
    Bernstein, D. S. and A. N. Michel (Guest Eds.), “Special Issue on Saturating Actuators”, Int. J. Robust Nonlinear Control, vol. 5, no. 5, 1995, pp. 375–540. MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Boukas, E. K. and M. S. Mahmoud, “A Practical Approach to Control of Nonlinear Discrete-Time State-Delay Systems”, Optim. Control Appl. Methods, vol. 10, 2007, pp. 1–21. MathSciNetGoogle Scholar
  7. 7.
    Boukas, E. K. and N. K. M’Sirdi, “Stabilization of Linear Systems via Delayed State Feedback Controller”, ICIC Express Lett., vol. 2, no. 1, 2008, pp. 1–6. CrossRefGoogle Scholar
  8. 8.
    Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in Systems Theory and Control, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, 1994. CrossRefGoogle Scholar
  9. 9.
    Branicky, M., “Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems”, IEEE Trans. Autom. Control, vol. 43, no. 4, 1998, pp. 475–582. MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chen, N. and M. Ikeda, “Decentralized \({\mathcal{H}}_{\infty}\) Control of Multi-Channel Systems with Norm-Bounded Parametric Uncertainties”, Proc. the 16th IFAC World Congress, Prague, Czech Republic, 2005, pp. 457–463. Google Scholar
  11. 11.
    Chen, W. H., Z. H. Guan and X. Lu, “Delay-Dependent Guaranteed Cost Control for Uncertain Discrete-Time Systems with Delay”, IEE Proc., Control Theory Appl., vol. 150, 2003, pp. 412–416. CrossRefGoogle Scholar
  12. 12.
    Corfmat, J. P. and A. S. Morse, “Decentralized Control of Linear Multivariable Systems”, Automatica, vol. 12, no. 5, 1976, pp. 479–495. MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Cuzzola, F. A. and M. Morari, “A Generalized Approach for Analysis and Control of Discrete-Time Piecewise Affine and Hybrid Systems”, Hybrid Systems: Computation and Control, Di Benedetto, M. D. and A. L. San Giovanni-Vincentelli (Eds.), Springer, Berlin, 2001. Google Scholar
  14. 14.
    Daafouz, J., P. Riedinger and C. Lung, “Stability Analysis and Control Synthesis for Switched Systems: A Switched Lyapunov Function Approach”, IEEE Trans. Autom. Control, vol. 47, 2002, pp. 1883–1887. CrossRefGoogle Scholar
  15. 15.
    Date, R. A. and J. H. Chow, “A Parameterization Approach to Optimal \({\mathcal{H}}_{2}\) and \({\mathcal{H}}_{\infty}\) Decentralized Control Problems”, Automatica, vol. 29, no. 2, 1993, pp. 457–463. MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    DeCarlo, R., M. Branicky, S. Pettersson and B. Lennartson, “Perspectives and Results on the Stability and Stabilizability of Hybrid Systems”, Proc. IEEE, vol. 88, 2000, pp. 1069–1082. CrossRefGoogle Scholar
  17. 17.
    Fridman, E. and U. Shaked, “Delay-Dependent \({\mathcal{H}}_{\infty}\) Control of Uncertain Discrete Delay Systems”, Eur. J. Control, vol. 11, 2005, pp. 29–37. MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gahinet, P., A. Nemirovski, A. L. Laub and M. Chilali, LMI Control Toolbox, The Math Works, Boston, 1995. Google Scholar
  19. 19.
    Gao, H. and T. Chen, “New Results on Stability of Discrete-Time Systems with Time-Varying State-Delay”, IEEE Trans. Autom. Control, vol. 52, 2007, pp. 328–334. MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ghosh, S., S. K. Das and G. Ray, “Decentralized Stabilization of Uncertain Systems with Interconnection and Feedback Delay: An LMI Approach”, IEEE Trans. Autom. Control, vol. 54, no. 4, 2009, pp. 905–912. MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hale, J. K. and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, Berlin, 1993. MATHGoogle Scholar
  22. 22.
    Haimes, Y. Y., Hierarchical Analyses of Water Resources Systems, McGraw-Hill, New York, 1977. Google Scholar
  23. 23.
    Hassan, M. F., M. S. Mahmoud and M. I. Younis, “A Dynamic Leontief Modeling Approach to Management for Optimal Utilization in Water Resources Systems”, IEEE Trans. Syst. Man Cybern., vol. SMC-11, 1981, pp. 552–558. CrossRefGoogle Scholar
  24. 24.
    Hattingh, J. and M. Claassen, “Securing Water Quality for Life”, Int. J. Water Resour. Dev., vol. 24, 2008, pp. 401–405. CrossRefGoogle Scholar
  25. 25.
    He, Z. and Y. Lu, “Decentralized Control of Spatially Interconnected Affine Fuzzy Systems with Application to a Morphing Airfoil”, ICIC Express Lett., vol. 3, no. 3(B), 2009, pp. 593–598. Google Scholar
  26. 26.
    Hovd, M. and S. Skogestad, “Control of Symmetrically Interconnected Plants”, Automatica, vol. 30, 1994, pp. 957–973. MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Hu, Z., “Decentralized Stabilization of Large-Scale Interconnected Systems with Delays”, IEEE Trans. Autom. Control, vol. 39, no. 5, 1994, pp. 180–182. MATHGoogle Scholar
  28. 28.
    Istepanian, R. S. H. and J. F. Whidborne, Digital Controller Implementation and Fragility, Springer, New York, 2001. CrossRefGoogle Scholar
  29. 29.
    Ji, Z. and L. Wang, “Robust \({\mathcal{H}}_{\infty}\) Control and Quadratic Stabilization of Uncertain Switched Linear Systems”, Proc. American Control Conference, 2004, pp. 4543–4548. Google Scholar
  30. 30.
    Jiang, X. and Q. L. Han, “New Stability Criteria for Linear Systems with Interval Time-Varying Delays”, Automatica, vol. 44, no. 12, 2008, pp. 2680–2685. MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Johansoon, M. and A. Rantzer, “Computation of Piecewise Quadratic Lyapunov Functions for Hybrid Systems”, IEEE Trans. Autom. Control, vol. 43, 1998, pp. 555–559. CrossRefGoogle Scholar
  32. 32.
    Kapila, V. and W. M. Haddad, “Memoryless \({\mathcal{H}}_{\infty}\) Controllers for Discrete-Time Systems with Time-Delay”, Automatica, vol. 34, no. 5, 1998, pp. 1141–1144. MATHCrossRefGoogle Scholar
  33. 33.
    Kim, S., S. A. Campbell and X. Liu, “Stability of a Class of Linear Switching Systems with Time-Delay”, IEEE Trans. Circuits Syst. II, vol. 53, 2006, pp. 384–393. MathSciNetGoogle Scholar
  34. 34.
    Koutsoukos, X. D. and P. J. Antsaklis, “Design of Stabilizing Switching Control Laws for Discrete- and Continuous-Time Linear Systems using Piecewise-Linear Lyapunov Functions”, Int. J. Control, vol. 75, 2002, pp. 932–945. MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Lam, J., G.-H. Yang, S.-Y. Zhang and J. Wang, “Reliable Control using Redundant Controllers”, IEEE Trans. Autom. Control, vol. 43, 1998, pp. 1588–1593. MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Lee, T. N. and U. L. Radovic, “Decentralized Stabilization of Linear Continuous or Discrete-Time Systems with Delays in the Interconnection”, IEEE Trans. Autom. Control, vol. 33, no. 5, 1989, pp. 757–760. MathSciNetGoogle Scholar
  37. 37.
    Lee, K. H., “Robust Decentralized Stabilization of a Class of Linear Discrete-Time Systems with Nonlinear Interactions”, Int. J. Control, vol. 80, 2007, pp. 1544–1551. MATHCrossRefGoogle Scholar
  38. 38.
    Leite, V. J. S. and M. F. Miranda, “Stabilization of Discrete Time-Varying Delay Systems: A Convex Parameter Dependent Approach”, Proc. American Control Conference, Seattle, Washington, June 11–13, 2008, pp. 4934–4939. Google Scholar
  39. 39.
    Liberzon, D. and A. Morse, “Basic Problems in Stability and Design of Switched Systems”, IEEE Control Syst. Mag., vol. 19, no. 5, 1999, pp. 59–70. CrossRefGoogle Scholar
  40. 40.
    Liberzon, D., Switching in Systems and Control, Birkhäuser, Boston, 2003. MATHCrossRefGoogle Scholar
  41. 41.
    Liu, F. and S. Y. Zhang, “Robust Decentralized Output Feedback Control of Similar Composite System with Uncertainties Unknown”, Proc. American Control Conference, vol. 6, 1999, pp. 3838–3842. Google Scholar
  42. 42.
    Mahmoud, M. S. and S. J. Saleh, “Regulation of Water Quality Standards in Streams by Decentralized Control”, Int. J. Control, vol. 41, 1985, pp. 525–540. MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Mahmoud, M. S., M. F. Hassan and M. G. Darwish, Large Scale Control Systems: Theories and Techniques, Dekker, New York, 1985. MATHGoogle Scholar
  44. 44.
    Mahmoud, M. S. and M. F. Hassan, “A Decentralized Water Quality Control Scheme”, IEEE Trans. Syst. Man Cybern., vol. SMC-16, 1986, pp. 694–702. CrossRefGoogle Scholar
  45. 45.
    Mahmoud, M. S., M. F. Hassan and S. J. Saleh, “Decentralized Structures for Stream Water Quality Control Problems”, Optim. Control Appl. Methods, vol. 6, 1987, pp. 167–186. CrossRefGoogle Scholar
  46. 46.
    Mahmoud, M. S., “Stabilizing Control for a Class of Uncertain Interconnected Systems”, IEEE Trans. Autom. Control, vol. 39, no. 12, 1994, pp. 2484–2488. MATHCrossRefGoogle Scholar
  47. 47.
    Mahmoud, M. S. and S. Bingulac, “Robust Design of Stabilizing Controllers for Interconnected Time-Delay Systems”, Automatica, vol. 34, 1998, pp. 795–800. MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Mahmoud, M. S. and M. Zribi, “Robust and \({\mathcal{H}}_{\infty}\) Stabilization of Interconnected Systems with Delays”, IEE Proc., Control Theory Appl., vol. 145, 1998, pp. 558–567. CrossRefGoogle Scholar
  49. 49.
    Mahmoud, M. S., “Robust \({\mathcal{H}}_{\infty}\) Control of Discrete Systems with Uncertain Parameters and Unknown Delays”, Automatica, vol. 36, 2000, pp. 627–635. MATHCrossRefGoogle Scholar
  50. 50.
    Mahmoud, M. S. and L. Xie, “Guaranteed Cost Control of Uncertain Discrete Systems with Delays”, Int. J. Control, vol. 73, No. 2, 2000, pp. 105–114. MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Mahmoud, M. S., Robust Control and Filtering for Time-Delay Systems, Dekker, New York, 2000. MATHGoogle Scholar
  52. 52.
    Mahmoud, M. S., “Resilient Linear Filtering of Uncertain Systems”, Automatica, vol. 40, no. 10, 2004, pp. 1797–1802. MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Mahmoud, M. S., Resilient Control of Uncertain Dynamical Systems, Springer, Berlin, 2004. Google Scholar
  54. 54.
    Mahmoud, M. S., “Resilient Control of Uncertain Continuous-Time State-Delay Systems”, Mediterr. J. Meas. Control, vol. 3, no. 2, 2007, pp. 79–92. Google Scholar
  55. 55.
    Mahmoud, M. S., E. K. Boukas and P. Shi, “Resilient Feedback Stabilization of Discrete-Time Systems with Delays”, IMA J. Math. Control Inf., vol. 25, no. 2, 2008 pp. 141–156. MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Mahmoud, M. S., M. N. Nounou and H. N. Nounou, “Analysis and Synthesis of Uncertain Switched Discrete-Time Systems”, IMA J. Math. Control Inf., vol. 24, 2007, pp. 245–257. MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Mahmoud, M. S., “Linear Hybrid Systems with Time-Varying Delays: \({\mathcal{H}}_{\infty}\) Stabilization Schemes”, Int. J. Syst. Control Commun., vol. 1, no. 2, 2008, pp. 147–169. CrossRefGoogle Scholar
  58. 58.
    Mahmoud, M. S., A. W. Saif and P. Shi, “Stabilization of Linear Switched Delay Systems: \({\mathcal{H}}_{2}\) and \({\mathcal{H}}_{\infty}\) Methods”, J. Optim. Theory Appl., vol. 142, Issue 3, 2009, pp. 583–607. MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Milot, J., M. J. Rodriguez and J. B. Serodes Song, “Contribution of Neural Networks for Modeling Trihalomethanes Occurrence in Drinking Water”, J. Water Resour. Plan. Manag., vol. 128, 2002, pp. 370–376. CrossRefGoogle Scholar
  60. 60.
    Miranda, M. F. and V. J. S. Leite, “Convex Analysis and Synthesis for Uncertain Discrete-Time Systems with Time-Varying State-Delay”, Proc. American Control Conference, Seattle, Washington, June 11–13, 2008, pp. 4910–4915. Google Scholar
  61. 61.
    Montagner, V. F., V. J. S. Leite, S. Tarbouriech and P. L. D. Peres, “Stability and Stabilization of Discrete-Time Linear Systems with State-Delay”, Proc. American Control Conference, Portland, Oregon, June 8–11, 2005, pp. 3806–3811. Google Scholar
  62. 62.
    Oucheriah, S., “Decentralized Stabilization of Large-Scale Systems with Multiple Delays in the Interconnection”, Int. J. Control, vol. 73, 2000, pp. 1213–1223. MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Pagilla, P. R., “Robust Decentralized Control of Large-Scale Interconnected Systems: General Interconnections”, Proc. American Control Conference, San Diego, 1999, pp. 4527–4531. Google Scholar
  64. 64.
    Pettersson, S. and B. Lennartson, “Stabilization of Hybrid Systems Using a Min-Projection Strategy”, Proc. American Control Conference, 2001, pp. 223–228. Google Scholar
  65. 65.
    Pettersson, S. and B. Lennartson, “Hybrid System Stability and Robustness Verification using Linear Matrix Inequalities”, Int. J. Control, vol. 75, 2002, pp. 1335–1355. MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Pettersson, S., “Synthesis of Switched Linear Systems”, Proc. Conference on Decision and Control, 2003, pp. 5283–5288. Google Scholar
  67. 67.
    Persis, C. D., R. D. Santis and A. S. Morse, “Supervisory Control with State-Dependent Dwell-Time Logic and Constraints”, Automatica, vol. 40, 2004, pp. 269–275. MATHCrossRefGoogle Scholar
  68. 68.
    Pettersson, S. and B. Lennartson, “Controller Design of Hybrid Systems”, Lecture Notes in Computer Science, vol. 1201, Springer, Berlin, 1997, pp. 240–254. Google Scholar
  69. 69.
    Saberi, A. and A. A. Stoorvogel (Guest Eds.), “Special Issue on Control Problems with Constraints”, Int. J. Robust Nonlinear Control, vol. 9, no. 10, 1999, pp. 583–734. MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Saif, A. W., M. S. Mahmoud and Y. Shi, “A Parameterized Delay-Dependent Control of Switched Discrete-Time Systems with Time-Delay”, Int. J. Innov. Comput. Inf. Control, vol. 5, no. 9, 2009, pp. 2893–2906. Google Scholar
  71. 71.
    Singh, T. and S. R. Vadali, “Robust Time-Delay Control of Multimode Systems”, Int. J. Control, vol. 62, no. 2, 1995, pp. 1319–1339. MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Siljak, D. D., Decentralized Control of Complex Systems, Academic Press, New York, 1991. Google Scholar
  73. 73.
    Siljak, D. D., D. M. Stipanovic and A. I. Zecevic, “Robust Decentralized Turbine/Governor Using Linear Matrix Inequalities”, IEEE Trans. Power Syst., vol. 17, 2002, pp. 715–722. CrossRefGoogle Scholar
  74. 74.
    Song, S. H. and J. K. Kim, “\({\mathcal{H}}_{\infty}\) Control of Discrete-Time Linear Systems with Norm-Bounded Uncertainties and Time-Delay in State”, Automatica, vol. 34, 1998, pp. 137–139. MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Stoorvogel, A. A., A. Saberi, C. Deliu and P. Sannuti, “Decentralized Stabilization of Linear Time-Invariant Systems Subject to Actuator Saturation”, Advanced Strategies in Control Systems with Input and Output Constraints, Tarbouriech, S., G. Garcia and A. H. Glattfelder (Eds.), Lecture Notes in Control and Information Sciences, vol. 346, Springer, London, 2007, pp. 397–419. CrossRefGoogle Scholar
  76. 76.
    Subbaroo Vemula, V. R., P. P. Mujumdar and S. Ghosh, “Risk Evaluation in Water Quality Management of a River System”, J. Water Resour. Plan. Manag., vol. 130, 2004, pp. 411–423. CrossRefGoogle Scholar
  77. 77.
    Sun, Z. and S. S. Ge, “Analysis and Synthesis of Switched Linear Control Systems”, Automatica, vol. 41, 2005, pp. 181–195. MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Wang S. H. and E. J. Davison, “On the Stabilization of Decentralized Control Systems”, IEEE Trans. Autom. Control, vol. 18, no. 5, 1973, pp. 473–478. MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Wang, Y., C. de-Souze and L. H. Xie, “Decentralized Output Feedback Control of Interconnected Uncertain Delay Systems”, Proc. 12th IFAC Congress, vol. 6, Australia, 1993, pp. 38–42. Google Scholar
  80. 80.
    Zhai, G., M. Ikeda and Y. Fujisaki, “Decentralized \({\mathcal{H}}_{\infty}\) Control Design: A Matrix Inequality Approach Using a Homotopy Method”, Automatica, vol. 37, 2001, pp. 565–573. MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Zhai, G., I. Matsune, J. Imae and T. Kobayashi, “A Note on Multiple Lyapunov Functions and Stability Condition for Switched and Hybrid Systems”, Int. J. Innov. Comput. Inf. Control, vol. 5, no. 5, 2009, pp. 1189–1200. Google Scholar
  82. 82.
    Zhai, G., B. Hu, K. Yasuda and A. N. Michel, “Qualitative Analysis of Discrete Switched Systems”, Proc. American Control Conference, Anchorage, AK, May 8–10, 2002, pp. 1880–1885. Google Scholar
  83. 83.
    Zhang, L., P. Shi and E. K. Boukas, “\({\mathcal{H}}_{\infty}\) Output-Feedback Control for Switched Linear Discrete-Time Systems with Time-Varying Delays”, Int. J. Control, vol. 80, 2007, pp. 1354–1365. MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Systems EngineeringKing Fahd Univ. of Petroleum & MineralsDhahranSaudi Arabia

Personalised recommendations