Skip to main content

Decentralized Control of Nonlinear Systems II

  • Chapter
  • 740 Accesses

Abstract

In this chapter, we start our examination of the development of decentralized control techniques for interconnected systems where we focus on the classes of nonlinear continuous-time systems. We focus on interconnected minimum-phase nonlinear systems with parameter uncertainty and bounded and/or strong nonlinear interconnections. The objective is to design a robust decentralized controller such that the closed-loop large-scale interconnected nonlinear system is globally asymptotically stable for all admissible uncertain parameters and interconnections. The design is recursive in nature. By employing \({\mathcal{H}}_{\infty}\) performance, the solution of the decentralized control problem is attained via the Hamilton-Jacobi-Isaacs (HJI) inequalities. Finally, a decentralized output-feedback tracking problem with disturbance attenuation is addressed for a new class of large-scale and minimum-phase nonlinear systems. Application of decentralized stabilization and excitation controls of multimachine power systems are demonstrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Al-Fuhaid, A. S., M. S. Mahmoud and F. A. Saleh, “Stabilization of Power Systems by Decentralized Systems and Control Theory”, Electr. Mach. Power Syst., vol. 21, no. 3, 1993, pp. 293–318.

    Article  Google Scholar 

  2. Ball, J. A., J. W. Helton and M. L. Walker, “\({\mathcal{H}}_{\infty}\) Control for Nonlinear System with Output Feedback”, IEEE Trans. Autom. Control, vol. 38, 1993, pp. 549–559.

    Article  MathSciNet  Google Scholar 

  3. Bergen, A. R., Power Systems Analysis, Prentice-Hall, Englewood Cliffs, 1986.

    Google Scholar 

  4. Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994.

    Book  MATH  Google Scholar 

  5. Chapman, J. W., M. D. Ilic, C. A. King, L. Eng and H. Kaufman, “Stabilizing a Multimachine Power System via Decentralized Feedback Linearizing Excitation Control”, IEEE Trans. Power Syst., vol. 8, no. 3, 1993, pp. 830–839.

    Article  Google Scholar 

  6. Chen, Y. H., G. Leitmann and Z. K. Xiong, “Robust Control Design for Interconnected Systems with Time-Varying Uncertainties”, Int. J. Control, vol. 54, 1991, pp. 1457–1477.

    Google Scholar 

  7. Freeman, R. A., P. V. Kokotovic, “Design of ‘Softer’ Robust Nonlinear Control Law”, Automatica, vol. 29, 1993, pp. 1425–1473.

    Article  MathSciNet  MATH  Google Scholar 

  8. Gahinet, P. and P. Apkarian, “A Linear Matrix Inequality Approach to \({\mathcal{H}}_{\infty}\) Control”, Int. J. Robust Nonlinear Control, vol. 4, 1994, pp. 421–448.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gahinet, P., A. Nemirovski, A.J. Laub and M. Chilali, LMI Control Toolbox, The Math Works, Natick, 1995.

    Google Scholar 

  10. Gao, L., L. Chen, Y. Fan and H. Ma, “Nonlinear Control Design for Power Systems”, Automatica, vol. 28, 1992, pp. 975–979.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gavel, D. T. and D. D. Siljak, “Decentralized Adaptive Control: Structural Conditions for Stability”, IEEE Trans. Autom. Control, vol. 34, no. 4, 1989, pp. 413–426.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gong, Z., C. Wen and D. P. Mital, “Decentralized Robust Controller Design for a Class of Interconnected Uncertain Systems with Unknown Bound of Uncertainty”, IEEE Trans. Autom. Control, vol. 41, no. 6, 1996, pp. 850–854.

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, Y., Jiang, Z. P., and D. J. Hill, “Decentralized Robust Disturbance Attenuation for a Class of Large-Scale Nonlinear Systems”, Syst. Control Lett., vol. 17, 1999, pp. 71–85.

    Article  MathSciNet  Google Scholar 

  14. Guo, Y., D. J. Hill and Y. Wang, “Nonlinear Decentralized Control of Large-Scale Power Systems”, Automatica, vol. 36, 2000, pp. 1275–1289.

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, M. C. and Y. H. Chen, “Decentralized Control Design: Uncertain Systems with Strong Interconnections”, Int. J. Control, vol. 61, no. 6, 1995, pp. 1363–1385.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ikeda, M., and D. D. Siljak, “Optimality and Robustness of Linear Quadratic Control for Nonlinear Systems”, Automatica, vol. 26, 1990, pp. 499–511.

    Article  MathSciNet  MATH  Google Scholar 

  17. Isidori, A., Nonlinear Control Systems (3rd ed.), Springer, New York, 1995.

    Book  MATH  Google Scholar 

  18. Isidori, A., “Global Almost Disturbance Decoupling with Stability for Non Minimum-Phase Single-Input Single-Output Nonlinear Systems”, Syst. Control Lett., vol. 28, 1996, pp. 115–122.

    Article  MathSciNet  MATH  Google Scholar 

  19. Isidori, A., and W. Kang, “\({\mathcal{H}}_{\infty}\) Control via Measurement Feedback for General Nonlinear Systems”, IEEE Trans. Autom. Control, vol. 40, 1995, pp. 466–472.

    Article  MathSciNet  MATH  Google Scholar 

  20. Isidori, A., and W. Lin, “Global \({\mathcal{L}}_{2}\)-Gain State Feedback Design for a Class of Nonlinear Systems”, Syst. Control Lett., vol. 34, 1998, pp. 295–302.

    Article  MathSciNet  MATH  Google Scholar 

  21. Jain, S. and F. Khorrami, “Decentralized Adaptive Control of a Class of Large-Scale Interconnected Systems”, IEEE Trans. Autom. Control, vol. 42, no. 2, 1997, pp. 136–154.

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, Z. P., “Decentralized and Adaptive Nonlinear Tracking of Large-Scale Systems via Output Feedback”, IEEE Trans. Autom. Control, vol. 45, no. 11, 2000, pp. 2122–2128.

    Article  MATH  Google Scholar 

  23. Jiang, Z. P., “Global Output Feedback Control with Disturbance Attenuation for Minimum-Phase Nonlinear Systems”, Syst. Control Lett., vol. 39, no. 3, 2000, pp. 155–164.

    Article  MATH  Google Scholar 

  24. Khalil, H. K., Nonlinear Systems (2nd ed.), Prentice-Hall, Upper Saddle-River, 1996.

    Google Scholar 

  25. Khargonekar, P. P., I. R. Petersen, and K. Zhou, “Robust Stabilization of Uncertain Systems: Quadratic Stabilizability and \({\mathcal{H}}_{\infty}\) Control Theory”, IEEE Trans. Autom. Control, vol. 35, 1990, pp. 356–361.

    Article  MathSciNet  MATH  Google Scholar 

  26. King, C. A., Chapman, W. J., and M. D. Ilic, “Feedback Linearizing Excitation Control on Full-Scale Power System Model”, IEEE Trans. Power Syst., vol. 9, 1994, pp. 1102–1109.

    Article  Google Scholar 

  27. Krstić, M., I. Kanellakopoulos, P. V. Kokotović, Nonlinear and Adaptive Control Design, Wiley, New York, 1995.

    Google Scholar 

  28. Kundur, P., Power System Stability and Control, McGraw-Hill, New York, 1994.

    Google Scholar 

  29. Lin, W., “Global Robust Stabilization of Minimum-Phase Nonlinear Systems with Uncertainty”, Automatica, vol. 33, no. 3, 1997, pp. 521–526.

    Article  Google Scholar 

  30. Lin, W., and L. Xie, “A Link Between \({\mathcal{H}}_{\infty}\) Control of a Discrete-Time Nonlinear System and Its Linearization”, Int. J. Control, vol. 69, 1998, pp. 301–314.

    Article  MathSciNet  MATH  Google Scholar 

  31. Lu, Q., Y. Sun, Z. Xu and T. Mochizuki, “Decentralized Nonlinear Optimal Excitation Control”, IEEE Trans. Power Syst., vol. 11, 1996, pp. 1957–1962.

    Article  Google Scholar 

  32. Marino, R. and P. Tomei, “Robust Stabilization of Feedback Linearizable Time-Varying Uncertain Nonlinear Systems”, Automatica, vol. 29, 1993, pp. 181–189.

    Article  MathSciNet  MATH  Google Scholar 

  33. Marino, R., and W. Respondek, A. J. van der Schaft and P. Tomei, “Nonlinear \({\mathcal{H}}_{\infty}\) Almost Disturbance Decoupling”, Syst. Control Lett., vol. 23, 1994, pp. 159–168.

    Article  MATH  Google Scholar 

  34. Marino, R. and P. Tomei, Nonlinear Control Design: Geometric, Adaptive and Robust, Prentice-Hall, Englewood Cliffs, 1995.

    MATH  Google Scholar 

  35. Marino, R., and P. Tomei, “Nonlinear Output Feedback Tracking with Disturbance Attenuation”, IEEE Trans. Autom. Control, vol. 44, 1999, pp. 18–28.

    Article  MathSciNet  MATH  Google Scholar 

  36. Mazenc, F., L. Praly and W. P. Dayawansa, “Global Stabilization by Output Feedback: Examples and Counter Examples”, Syst. Control Lett., vol. 23, 1994, pp. 17–32.

    Article  MathSciNet  Google Scholar 

  37. Paz, R. A., “Decentralized Control”, Proc. American Control Conference, San Francisco, California, 1993, pp. 2381–2385.

    Google Scholar 

  38. Petersen, I. R., and D. C. McFarlane, “Optimal Guaranteed Cost Control and Filtering for Uncertain Systems”, IEEE Trans. Autom. Control, vol. 39, 1994, pp. 1971–1977.

    Article  MathSciNet  MATH  Google Scholar 

  39. Petersen, I. R., D. C. McFarlane, and M. A. Rotea, “Optimal Guaranteed Cost Control of Discrete-Time Uncertain Linear Systems”, Int. J. Robust Nonlinear Control, vol. 8, 1998, pp. 649–657.

    Article  MathSciNet  MATH  Google Scholar 

  40. Praly, L., and Z. P. Jiang, “Stabilization by Output Feedback for Systems with ISS Inverse Dynamics”, Syst. Control Lett., vol. 21, 1993, pp. 19–33.

    Article  MathSciNet  MATH  Google Scholar 

  41. Qiu, Z., J. F. Dorsey, J. Bond, and J. D. McCalley, “Application of Robust Control to Sustained Oscillations in Power Systems”, IEEE Trans. Circuits Syst. I, vol. 39, 1992, pp. 470–476.

    Article  Google Scholar 

  42. Qu, Z., “Robust Control of Nonlinear Uncertain Systems Under Generalized Matching Conditions”, Automatica, vol. 29, 1993, pp. 985–998.

    Article  MATH  Google Scholar 

  43. Saberi, A., and H. K. Khalil, “Decentralized Stabilization of Interconnected Systems Using Output Feedback”, Int. J. Control, vol. 41, 1995, pp. 1461–1475.

    Article  MathSciNet  Google Scholar 

  44. Shi, L. and S. K. Singh, “Decentralized Adaptive Controller Design for Large-Scale Systems with Higher-Order Uncertainties”, IEEE Trans. Autom. Control, vol. 37, no. 8, 1992, pp. 1106–1118.

    Article  MathSciNet  MATH  Google Scholar 

  45. Shi, L. and S. K. Singh, “Decentralized Controller Design for Interconnected Uncertain Systems: Extensions to Higher-Order Uncertainties”, Int. J. Control, vol. 57, no. 6, 1993, pp. 1453–1468.

    Article  MathSciNet  MATH  Google Scholar 

  46. Siljak, D. D., Decentralized Control of Complex Systems, Academic Press, New York, 1991.

    Google Scholar 

  47. Sontag, E. D., “Comments on Integral Variants of ISS”, Syst. Control Lett., vol. 34, 1998, pp. 93–100.

    Article  MathSciNet  MATH  Google Scholar 

  48. Sontag, E. D., and Y. Wang, “On Characterizations of the Input-to-State Stability Property”, Syst. Control Lett., vol. 24, 2000, pp. 351–359.

    Article  MathSciNet  Google Scholar 

  49. Su, W., L. Xie and C. E. De Souza, “Global Robust Disturbance Attenuation and Almost Disturbance Decoupling for Uncertain Cascaded Nonlinear Systems”, Automatica, vol. 35, 1999, pp. 697–707.

    Article  MATH  Google Scholar 

  50. Tezcan, I. E., and Basar, “Disturbance Attenuating Adaptive Controllers for Parametric Strict Feedback Nonlinear Systems with Output Measurements”, J. Dyn. Syst. Meas. Control, vol. 121, 1999, pp. 48–57.

    Article  Google Scholar 

  51. Van der Schaft, A. J., \({\mathcal{L}}_{2}\) -Gain and Passivity Techniques in Nonlinear Control, Springer, London, 1996.

    Google Scholar 

  52. Van Der Schaft, A. J., “\({\mathcal{L}}_{2}\)-Gain Analysis of Nonlinear Systems and Nonlinear \({\mathcal{H}}_{\infty}\) Control IEEE Trans. Autom. Control, vol. 37, 1992, pp. 770–784.

    Article  MATH  Google Scholar 

  53. Veillette, R. J., J. V. Medanic, and W. R. Perkins, “Design of Reliable Control Systems”, IEEE Trans. Autom. Control, vol. 37, 1992, pp. 290–304.

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, Y., G. Guo and D. J. Hill, “Robust Decentralized Nonlinear Controller Design for Multimachine Power Systems”, Automatica, vol. 33, 1997.

    Google Scholar 

  55. Wang, Y., C. E. De Souza and L. Xie, “Decentralized Output Feedback Control of Interconnected Uncertain Systems”, Proc. the 2nd European Control Conference, Groningen, The Netherlands, 1993, pp. 1826–1831.

    Google Scholar 

  56. Wang, Y., L. Xie, and C. E. de Souza, “Robust Control of a Class of Uncertain Nonlinear Systems”, Syst. Control Lett., vol. 19, 1992, pp. 139–149.

    Article  Google Scholar 

  57. Wang, Y., L. Xie, D. J. Hill and R. H. Middleton, “Robust Nonlinear Controller Design for Transient Stability Enhancement of Power Systems”, Proc. 31st IEEE Conf. Decision and Control, Tucson, AZ, 1992, pp. 1117–1122.

    Google Scholar 

  58. Wang, Y., C. E. de Souza, and L. Xie, “Decentralized Output Feedback Control of Interconnected Uncertain Systems”, Proc. Europ. Contr. Conf., Groningen, The Netherlands, 1993, pp. 1826–1831.

    Google Scholar 

  59. Wen, C., and Y. C. Soh, “Decentralized Adaptive Control Using Integrator Backstepping”, Automatica, vol. 33, 1997, pp. 1719–1724.

    Article  MathSciNet  Google Scholar 

  60. Xie, S., L. Xie and W. Lin, “Global \({\mathcal{H}}_{\infty}\) Control for a Class of Interconnected Nonlinear Systems”, Technical Report, School of EEE, Nanyang Technological University, Singapore, 1998.

    Google Scholar 

  61. Xie, L., and Y. C. Soh, “Guaranteed Cost Control of Uncertain Discrete-Time Systems”, Control Theory Adv. Technol., vol. 10, 1995, pp. 1235–1251.

    MathSciNet  Google Scholar 

  62. Yan, X. -G., J.-J. Wang, X.-Y. Lu and S.-Y. Zhang, “Decentralized Output Feedback Robust Stabilization for a Class of Nonlinear Interconnected Systems with Similarity”, IEEE Trans. Autom. Control, vol. 43, 1998, pp. 294–299.

    Article  MathSciNet  MATH  Google Scholar 

  63. Zribi, M., M. S. Mahmoud, M. Karkoub and T. Li, “\({\mathcal{H}}_{\infty}\)-Controllers for Linearized Time-Delay Power Systems”, IEE Proc., Gener. Transm. Distrib., vol. 147, no. 6, 2000, pp. 401–408.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdi S. Mahmoud .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mahmoud, M.S. (2011). Decentralized Control of Nonlinear Systems II. In: Decentralized Systems with Design Constraints. Springer, London. https://doi.org/10.1007/978-0-85729-290-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-290-2_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-289-6

  • Online ISBN: 978-0-85729-290-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics