Decentralized Control of Nonlinear Systems I

  • Magdi S. Mahmoud


In this chapter, we start our examination of the development of decentralized control techniques for interconnected systems where we focus on the classes of nonlinear continuous-time systems. We identify classes for the system structure along with the underlying assumptions and emphasize the information and design constraints. In the context of control design, we pay attention to decentralized output feedback schemes.


Interconnected System Guarantee Cost Control Dynamic Output Feedback Reduce Order Observer Global Robust Stabilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994. MATHCrossRefGoogle Scholar
  2. 2.
    Cao, Y. Y., Y. X. Sun and W. J. Mao, “Output Feedback Decentralized Stabilization: ILMI Approach”, Syst. Control Lett., vol. 35, 1998, pp. 183–194. MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Chen, Y. H., G. Leitmann and K. Xiong, “Robust Control Design for Interconnected Systems with Time-Varying Uncertainties”, Int. J. Control, vol. 54, 1991, pp. 1119–1142. MATHCrossRefGoogle Scholar
  4. 4.
    Chu, D. and D. D. Šiljak, “A Canonical Form for the Inclusion Principle of Dynamic Systems”, SIAM J. Control Optim., vol. 44, 2005, pp. 969–990. MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    D’Andrea, R. and G. E. Dullerud, “Distributed Control Design for Spatially Interconnected Systems”, IEEE Trans. Autom. Control, vol. 48, 2003, pp. 1478–1495. MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dullerud, G. E. and F. Paganini, A Course in Robust Control Theory—A Convex Approach, Springer, New York, 2000. CrossRefGoogle Scholar
  7. 7.
    Fax, J. A. and R. M. Murray, “Information Flow and Cooperative Control of Vehicle Formations”, IEEE Trans. Autom. Control, vol. 49, 2004, pp. 1465–1476. MathSciNetCrossRefGoogle Scholar
  8. 8.
    Freeman, R. A. and Kokotovic, P. V., “Backstepping Design of Robust Controllers for a Class of Nonlinear Systems”, Preprints of the IFAC Nonlinear Control Systems Design Symposium, Bordeaux, France 1992, pp. 307–312. Google Scholar
  9. 9.
    Freeman, R. A. and P.V. Kokotovic, “Design of ‘Softer’ Robust Nonlinear Control Law”, Automatica, vol. 29, 1993, pp. 1425–1473. MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gahinet, P., A. Nemirovski, A.J. Laub and M. Chilali, LMI Control Toolbox, The Math Works, Natick, 1995. Google Scholar
  11. 11.
    Gahinet, P. and P. Apkarian, “A Linear Matrix Inequality Approach to \({\mathcal{H}}_{\infty}\) Control”, Int. J. Robust Nonlinear Control, vol. 4, 1994, pp. 421–448. MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Gajic, Z. and M. T. J. Qureshi, Lyapunov Matrix Equation in System Stability and Control, Academic Press, San Diego, 1995. Google Scholar
  13. 13.
    Gao, L., L. Chen, Y. Fan and H. Ma, “A Nonlinear Control Design for Power Systems”, Automatica, vol. 28, 1992, pp. 975–979. MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Garcia, G., J. Daafouz and J. Bernussou, “The Infinite-Time Near-Optimal Decentralized Regulator Problem for Singularly Perturbed Systems: A Convex Optimization Approach”, Automatica, vol. 38, 2002, pp. 1397–1406. MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Geromel, J. C., J. Bernussou and M.C. de Oliveira, “\({\mathcal{H}}_{2}\)-norm Optimization with Constrained Dynamic Output Feedback Controllers: Decentralized and Reliable Control”, IEEE Trans. Autom. Control, vol. 44, 1999, pp. 1449–1454. MATHCrossRefGoogle Scholar
  16. 16.
    Geromel J. C., J. Bernussou and P. L. D. Peres, “Decentralized Control Through Parameter Space Optimization”, Automatica, vol. 30, 1994, pp. 1565–1578. MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Gong, Z., C. Wen and D.P. Mital, “Decentralized Robust Controller Design for a Class of Interconnected Uncertain Systems with Unknown Bound of Uncertainty”, IEEE Trans. Autom. Control, vol. 41, no. 6, 1996, pp. 850–854. MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Guo, Y., Z. P. Jiang and D. J. Hill, “Decentralized Robust Disturbance Attenuation for a Class of Large-Scale Nonlinear Systems”, Syst. Control Lett., vol. 17, 1999, pp. 71–85. MathSciNetCrossRefGoogle Scholar
  19. 19.
    Guo, Y., D. J. Hill and Y. Wang, “Nonlinear Decentralized Control of Large-Scale Power Systems”, Automatica, vol. 36, 2000, pp. 1275–1289. MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Han, M. C. and Y. H. Chen, “Decentralized Control Design: Uncertain Systems with Strong Interconnections”, Int. J. Control, vol. 61, no. 6, 1995, pp. 1363–1385. MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Ho, D. W. C. and G. Lu, “Robust Stabilization for a Class of Discrete-Time Non-Linear Systems via Output Feedback: The Unified LMI Approach”, Int. J. Control, vol. 76, 2003, pp. 105–115. MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Ioannou, P., “Decentralized Adaptive Control of Interconnected Systems”, IEEE Trans. Autom. Control, vol. 31, no. 4, 1986, pp. 291–298. MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Isidori, A., Nonlinear Control Systems (3rd ed.), Springer, London, 1995. MATHCrossRefGoogle Scholar
  24. 24.
    Iwasaki, T. and R. E. Skelton, “All Controllers for the General \({\mathcal{H}}_{\infty}\) Control Problem: LMI Existence Conditions and State Space Formulas”, Automatica, vol. 30, 1994, pp. 1307–1317. MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Jain, S. and F. Khorrami, “Decentralized Adaptive Control of a Class of Large-Scale Interconnected Systems”, IEEE Trans. Autom. Control, vol. 42, 1997, pp. 136–154. MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Jiang, Z. P., “Decentralized and Adaptive Nonlinear Tracking of Large-Scale Systems via Output Feedback”, IEEE Trans. Autom. Control, vol. 45, no. 11, 2000, pp. 2122–2128. MATHCrossRefGoogle Scholar
  27. 27.
    Jiang, Z. P., “Global Output Feedback Control with Disturbance Attenuation for Minimum-Phase Nonlinear Systems”, Syst. Control Lett., vol. 39, no. 3, 2000, pp. 155–164. MATHCrossRefGoogle Scholar
  28. 28.
    Kanellakopoulos, I., P. V. Kokotovic and A. S. Morse, “Systematic Design of Adaptive Controllers for Feedback Linearizable Systems”, IEEE Trans. Autom. Control, vol. 36, no. 11, 1991, pp. 1241–1253. MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Khalil, H. K., Nonlinear Systems (2nd ed.), Prentice-Hall, New York, 1996. Google Scholar
  30. 30.
    Khargonekar, P. P., I. R. Petersen, and K. Zhou, “Robust Stabilization of Uncertain Systems: Quadratic Stabilizability and \({\mathcal{H}}_{\infty}\) Control Theory”, IEEE Trans. Autom. Control, vol. 35, 1990, pp. 356–361. MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Kreindler, E., “Conditions for Nonnegativeness of Partitioned Matrices”, IEEE Trans. Autom. Control, vol. AC-17, 1972, pp. 147–148. MathSciNetCrossRefGoogle Scholar
  32. 32.
    Krstic, M., I. Kanellakopoulos and P. V. Kokotovic, Nonlinear and Adaptive Control Design, Wiley, New York, 1995. Google Scholar
  33. 33.
    Kwakernaak, H. and R. Sivan, Linear Optimal Control Systems, Wiley, New York, 1972. MATHGoogle Scholar
  34. 34.
    Li, K., E. B. Kosmatopoulos, P. A. Ioannou, and H. Ryciotaki-Boussalis, “Large Segmented Telescopes: Centralized, Decentralized and Overlapping Control Designs”, IEEE Control Syst. Mag., vol. 20, 2000, pp. 59–72. CrossRefGoogle Scholar
  35. 35.
    Lin, W., “Global Robust Stabilization of Minimum-Phase Nonlinear Systems with Uncertainty”, Automatica, vol. 33, 1997, pp. 521–526. Google Scholar
  36. 36.
    Liu, X. P., G. X. Gu and K. M. Zhou, “Robust Stabilization of MIMO Nonlinear Systems by Backstepping”, Automatica, vol. 35, no. 5, 1999, pp. 987–992. MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Liu, X. P., K. M. Zhou and G. X. Gu, “Structure and Robust Stabilization of Multivariable Nonlinear Interlacing Systems”, Preprints of the 14th IFAC World Congress, Beijing, China, 1999, pp. 411–416. Google Scholar
  38. 38.
    Lu, Q. and Y. Sun, “Nonlinear Stabilizing Control of Multimachine Systems”, IEEE Trans. Power Syst., vol. 4, 1989, pp. 236–241. CrossRefGoogle Scholar
  39. 39.
    Marino, R. and P. Tomei, “Robust Stabilization of Feedback Linearizable Time-Varying Uncertain Nonlinear Systems”, Automatica, vol. 29, 1993, pp. 181–189. MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Marino, R. and P. Tomei, Nonlinear Control Design: Geometric, Adaptive and Robust, Prentice-Hall, London, 1995. MATHGoogle Scholar
  41. 41.
    Marino, R. and R. Tomei, “Nonlinear Output-Feedback Tracking with Disturbance Attenuation”, IEEE Trans. Autom. Control, vol. 44, 1999, pp. 18–28. MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Marino, R., W. Respondek, A. J. van der Schaft and P. Tomei, “Nonlinear \({\mathcal{H}}_{\infty}\) Almost Disturbance Decoupling”, Syst. Control Lett., vol. 23, 1994, pp. 159–168. MATHCrossRefGoogle Scholar
  43. 43.
    Mazenc, F., L. Praly and W. P. Dayawansa, “Global Stabilization by Output Feedback: Examples and Counterexamples”, Syst. Control Lett., vol. 23, 1994, pp. 17–32. MathSciNetCrossRefGoogle Scholar
  44. 44.
    Mielczarski, M. and A. Zajaczkowski, “Nonlinear Stabilization of Synchronous Generator”, Proc. 11th IFAC World Congr., Tallinn, USSR, 1990. Google Scholar
  45. 45.
    Mielczarski, M. and A. Zajaczkowski, “Nonlinear Field Voltage Control of a Synchronous Generator using Feedback Linearization”, Automatica, vol. 30, 1994, pp. 1625–1630. MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Pagilla, P. R. and Y. Zhu, “A Decentralized Output Feedback Controller for a Class of Large-Scale Interconnected Nonlinear Systems”, J. Dyn. Syst. Meas. Control, vol. 127, 2005, pp. 167–172. CrossRefGoogle Scholar
  47. 47.
    Petersen, I. R. and D. C. McFarlane, “Optimal Guaranteed Cost Control and Filtering for Uncertain Linear Systems”, IEEE Trans. Autom. Control, vol. 39, 1994, pp. 1971–1977. MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Praly, L. and Z. P. Jiang, “Stabilization by Output Feedback for Systems with ISS Inverse Dynamics”, Syst. Control Lett., vol. 21, 1993, pp. 19–33. MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Qi, X., M. V. Salapaka, P. G. Voulgaris and M. Khammash, “Structured Optimal and Robust control with Multiple Criteria: A Convex Solution”, IEEE Trans. Autom. Control, vol. 49, 2004, pp. 1623–1640. MathSciNetCrossRefGoogle Scholar
  50. 50.
    Qiu, Z., J. F. Dorsey, J. Bond, and J. D. McCalley, “Application of Robust Control to Sustained Oscillations in Power Systems”, IEEE Trans. Circuits Syst. I, vol. 39, 1992, pp. 470–476. CrossRefGoogle Scholar
  51. 51.
    Qu, Z., “Robust Control of Nonlinear Uncertain Systems Under Generalized Matching Conditions”, Automatica, vol. 29, 1993, pp. 985–998. MATHCrossRefGoogle Scholar
  52. 52.
    Rotkowitz, M. and S. Lall, “Decentralized Control Information Structures Preserved under Feedback”, Proc. IEEE Conf. Decision and Control, 2002, pp. 596–575. Google Scholar
  53. 53.
    Rotkowitz, M. and S. Lall, “A Characterization of Convex Problems in Decentralized Control”, IEEE Trans. Autom. Control, vol. 51, 2006, pp. 274–286. MathSciNetCrossRefGoogle Scholar
  54. 54.
    Saberi, A. and H. K. Khalil, “Decentralized Stabilization of Interconnected Systems Using Output Feedback”, Int. J. Control, vol. 41, 1985, pp. 1461–1475. MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Šiljak, D. D. and D. Stipanovic, “Robust Stabilization of Nonlinear Systems”, Math. Probl. Eng., vol. 6, 2000, pp. 461–493. MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Shi, L. and S. K. Singh, “Decentralized Control for Interconnected Uncertain Systems: Extensions to Higher Order Uncertainties”, Int. J. Control, vol. 57, no. 6, 1993, pp. 1453–1458. MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Stipanovic, D. M. and D. D. Šiljak, “Robust Stability and Stabilization of Discrete-Time Non-linear Systems: The LMI Approach”, Int. J. Control, vol. 74, 2001, pp. 873–879. MATHCrossRefGoogle Scholar
  58. 58.
    Šiljak, D. D. and D. Stipanovic, “Autonomous Decentralized Control”, Proc. ASME Int. Mech. Eng. Congress, 2001, pp. 761–765. Google Scholar
  59. 59.
    Šiljak, D. D. and A. I. Zečević, “Control of Large-Scale Systems: Beyond Decentralized Feedback”, Annu. Rev. Control, vol. 20, 2004, pp. 169–179. Google Scholar
  60. 60.
    Šiljak, D. D., Decentralized Control of Complex Systems, Academic Press, New York, 1991. Google Scholar
  61. 61.
    Scorletti, G. and G. Duc, “An LMI Approach to Decentralized Control”, Int. J. Control, vol. 74, 2001, pp. 211–224. MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Singh, S. N., “Nonlinear State-Variable-Feedback Excitation and Governor-Control Design Using Decoupling Theory”, IEE Proc. D, 127, 1980, pp. 131–141. Google Scholar
  63. 63.
    Sontag, E. D., “Comments on Integral Variants of ISS”, Syst. Control Lett., vol. 34, 1998, pp. 93–100. MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Sontag, E. D. and Y. Wang, “On Characterizations of the Input-to-State Stability Property”, Syst. Control Lett., vol. 24, 1995, pp. 351–359. MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Stanković, S. S., M. J. Stanojević and D. D. Šiljak, “Decentralized Overlapping Control of a Platoon of Vehicles”, IEEE Trans. Control Syst. Technol., vol. 8, 2000, 816–832. CrossRefGoogle Scholar
  66. 66.
    Stanković, S. S., D. M. Stipanovic and D. D. Šiljak, “Decentralized Dynamic Output Feedback for Robust Stabilization of a Class of Nonlinear Interconnected Systems”, Automatica, vol. 43, 2007, pp. 861–867. MATHCrossRefGoogle Scholar
  67. 67.
    Stipanovic, D. M., Inhalan, R. Teo and C. Tomlin, “Decentralized Overlapping Control of a Formation of Unmanned Aerial Vehicles”, Automatica, vol. 40, 2004, pp. 1285–1296. MATHCrossRefGoogle Scholar
  68. 68.
    Stipanovic, D. M. and D. D. Šiljak, “Connective Stability of Discontinuous Dynamic Systems”, J. Optim. Theory Appl., vol. 115, 2002, pp. 711–726. MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Tezcan, I. E. and T. Basar, “Disturbance Attenuating Adaptive Controllers for Parametric Strict Feedback Nonlinear Systems with Output Measurements”, J. Dyn. Syst. Meas. Control, vol. 121, 1999, pp. 48–57. CrossRefGoogle Scholar
  70. 70.
    van der Schaft, A. J., \({\mathcal{L}}_{2}\) -Gain and Passivity Techniques in Nonlinear Control, Springer, London, 1997. Google Scholar
  71. 71.
    Veillette, R. J., J. V. Medanic, and W. R. Perkins, “Design of Reliable Control Systems”, IEEE Trans. Autom. Control, vol. 37, 1992, pp. 290–304. MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Wang, Y., D. J. Hill, L. Gao, and R. H. Middleton, “Transient Stability Enhancement and Voltage Regulation of Power Systems”, IEEE Trans. Power Syst., vol. 8, 1993, pp. 620–627. CrossRefGoogle Scholar
  73. 73.
    Wang, Y., G. Guo, D. J. Hill, and L. Gao, “Nonlinear Decentralized Control for Multimachine Power System Transient Stability Enhancement”, Proc. Stockholm Power Tech., Stockholm, Sweden, 1995, pp. 435–440. Google Scholar
  74. 74.
    Wang, Y., L. Xie, and C. E. de Souza, “Robust Control of a Class of Uncertain Nonlinear Systems”, Syst. Control Lett., vol. 19, 1992, pp. 139–149. CrossRefGoogle Scholar
  75. 75.
    Wang, Y., C. E. de Souza, and L. Xie, “Decentralized Output Feedback Control of Interconnected Uncertain Systems”, Proc. Europ. Contr. Conf., Groningen, The Netherlands, 1993, pp. 1826–1831. Google Scholar
  76. 76.
    Wang, Y. and D. J. Hill, “Robust Nonlinear Coordinated Control of Power Systems”, Automatica, vol. 32, 1996, pp. 611–618. MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Wang, Y., L. Xie, D. J. Hill and R. H. Middleton, “Robust Nonlinear Controller Design for Transient Stability Enhancement of Power Systems”, Proc. 31st IEEE Conf. Decision and Control, Tucson, AZ, 1992, pp. 1117–1122. Google Scholar
  78. 78.
    Wang, Y., D. J. Hill and G. Guo, “Robust Decentralized Control for Multimachine Power Systems”, IEEE Trans. Circuits Syst. I, vol. 45, 1998, pp. 271–279. CrossRefGoogle Scholar
  79. 79.
    Wang, W. J. and Y. H. Chen, “Decentralized Robust Control Design with Insufficient Number of Controllers”, Int. J. Control, vol. 65, 1996, pp. 1015–1030. MATHCrossRefGoogle Scholar
  80. 80.
    Wen, C. and Y. C. Soh, “Decentralized Adaptive Control Using Integrator Backstepping”, Automatica, vol. 33, 1997, pp. 1719–1724. MathSciNetCrossRefGoogle Scholar
  81. 81.
    Xie, S. L., L. H. Xie and W. Lin, “Global \({\mathcal{H}}_{\infty}\) Control for a Class of Interconnected Nonlinear Systems”, Preprints of the 14th IFAC World Congress, Beijing, China, 1999, pp. 73–78. Google Scholar
  82. 82.
    Xie, S., L. Xie, T. Wang and G. Guo, “Decentralized Control of Multimachine Power Systems with Guaranteed Performance”, IEE Proc., Control Theory Appl., vol. 147, 2000, pp. 355–365. CrossRefGoogle Scholar
  83. 83.
    Yang, G. H. and J. L. Wang, “Decentralized Controller Design for Composite Systems: Linear Case”, Int. J. Control, vol. 72, 1999, pp. 815–825. MATHCrossRefGoogle Scholar
  84. 84.
    Zaborszky, J., K. V. Prasad, and K. W. Whang, “Stabilizing Control in Emergencies”, IEEE Trans. Power Appar. Syst., vol. PAS-100, 1981, pp. 2374–2389. CrossRefGoogle Scholar
  85. 85.
    Zecevic, A. I., G. Neskovic and D. D. Šiljak, “Robust Decentralized Exciter Control with Linear Feedback”, IEEE Trans. Power Syst., vol. 19, 2004, pp. 1096–1103. CrossRefGoogle Scholar
  86. 86.
    Zecevic, A. I. and D. D. Šiljak, “Design of Robust Static Output Feedback for Large-Scale Systems”, IEEE Trans. Autom. Control, vol. 49, 2004, pp. 2040–2044. CrossRefGoogle Scholar
  87. 87.
    Zhai, G., M. Ikeda and Y. Fujisaki, “Decentralized Controller Design: A Matrix Inequality Design Using a Homotopy Method”, Automatica vol. 37, 2001, pp. 565–572. MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Zhou, K., Essentials of Robust Control, Prentice-Hall, New York, 1998. Google Scholar
  89. 89.
    Zhu, Y. and P. R. Pagilla, “Decentralized Output Feedback Control of a Class of Large-Scale Interconnected Systems”, IMA J. Math. Control Inf., vol. 24, 2007, pp. 57–69. MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Systems EngineeringKing Fahd Univ. of Petroleum & MineralsDhahranSaudi Arabia

Personalised recommendations