Skip to main content

Spectral Finite Element Method

  • Chapter
  • First Online:
Computational Techniques for Structural Health Monitoring

Abstract

This chapter presents the procedures for the development of various types of spectral elements. The chapter begins with basic outline of spectral finite element formulation and illustrates its utility for wave propagation studies is complex structural components. Two variants of spectral formulations, namely the Fourier transform-based, and Wavelet transform-based spectral FEM are presented for both 1D and 2D waveguides. A number of examples are solved using the formulated elements to show the effectiveness of the spectral FEM approach to solve problems involving high frequency dynamic response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amaratunga K, Williams JR (1995) Time integration using wavelet. In: Proceedings of SPIE, wavelet application for dual use, 2491, Orlando, FL, pp 894á¾¢902

    Google Scholar 

  2. Amaratunga K, Williams JR (1997) Wavelet-Galerkin solution of boundary value problems. Arch Comput Methods Eng 4(3):243á¾¢285

    Article  MathSciNet  Google Scholar 

  3. Belykin G (1992) On wavelet based algorithms for solving differential equations. Department of Mathematics, University of Colorado, Boulder

    Google Scholar 

  4. Chakroborty A (2004) Wave propagation in anisotropic and inhomogeneous medium, October 2004. Ph.D. thesis, Indian Institute of Science, Bangalore

    Google Scholar 

  5. Chakraborty A, Gopalakrishnan S (2006) An approximate spectral element for the analysis of wave propagation in inhomogeneous layered media. AIAA J 44(7):1676á¾¢1685

    Article  Google Scholar 

  6. Chen MQ, Hwang C, Shih YP (1996) The computation of wavelet-Galerkin approximation on a bounded interval. Int J Numer Methods Eng 39:2921á¾¢2944

    Article  MathSciNet  MATH  Google Scholar 

  7. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297á¾¢301

    Article  MathSciNet  MATH  Google Scholar 

  8. Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41:906á¾¢966

    Google Scholar 

  9. Doyle JF (1997) Wave propagation in structures. Springer, New York

    Book  MATH  Google Scholar 

  10. Gopalakrishnan S, Doyle JF (1994) Wave propagation in connected waveguides of varying cross-section. J Sound Vib 175(3):347á¾¢363

    Article  MATH  Google Scholar 

  11. Gopalakrishnan S, Doyle JF (1995) Spectral super-elements for wave propagation in structures with local non-uniformities. Comput Methods Appl Mech Eng 121:77á¾¢90

    Article  MATH  Google Scholar 

  12. Gopalakrishnan S, Chakraborty A, Roy Mahapatra D (2008) Spectral finite element method. Springer, London

    MATH  Google Scholar 

  13. Graff KF (1975) Wave motion in elastic solids. Dover Publications Inc., New York

    MATH  Google Scholar 

  14. Heideman MT, Johnson DH, Burrus CS (1984) Gauss and the history of the fast Fourier transform. IEEE ASSP Mag 1(4):14á¾¢21

    Article  Google Scholar 

  15. Moulin E, Assaad J, Delebarre C, Grondel S, Balageas D (2000) Modeling of integrated Lamb waves generation systems using a coupled finite element normal mode expansion method. Ultrasonics 38:522á¾¢526

    Article  Google Scholar 

  16. Nayfeh AH (1995) Wave propagation in layered anisotropic media. North Holland, Amsterdam

    MATH  Google Scholar 

  17. Powel MJD (1970) A Fortran subroutine for solving systems of nonlinear. Numerical methods for nonlinear algebraic equations. Rabinowitz P (ed) Ch. 7, pp 115á¾¢161, Algebraic Equations

    Google Scholar 

  18. Reddy JN (1985) Finite element method. McGraw Hill, New York

    Google Scholar 

  19. Rizzi SA (1989) A spectral analysis approach to wave propagation in layered solids potential in a wave guide. PhD thesis, Purdue University

    Google Scholar 

  20. Rose JL (1999) Ultrasonic waves in solid media. Cambridge University Press, Cambridge

    Google Scholar 

  21. Sneddon IN (1951) Fourier transforms. McGraw-Hill, New York

    Google Scholar 

  22. Sneddon IN (1964) Partial differential equations. McGraw-Hill, New York

    Google Scholar 

  23. Solie LP, Auld BA (1973) Elastic waves in free anisotropic plates. J Acoust Soc Am 54(1):50á¾¢65

    Article  Google Scholar 

  24. Varadan VK, Vinoy KJ, Gopalakrishnan S (2006) Smart material systems and MEMS. Wiley, Chichester

    Book  Google Scholar 

  25. Veidt M, Liub T, Kitipornchai S (2002) Modelling of Lamb waves in composite laminated plates excited by interdigital transducers. NDT E Int 35(7):437á¾¢447

    Article  Google Scholar 

  26. Verdict GS, Gien PH, Burge CP (1996) Finite element study of Lamb wave interactions with holes and through thickness defects in thin metal plates. NDT E Int 29(4):248

    Google Scholar 

  27. Viktorov IA (1967) Rayleigh and Lamb wave. Plenum Press, New York

    Google Scholar 

  28. Williams JR, Amaratunga K (1997) A discrete wavelet transform without edge effects using wavelet extrapolation. J Fourier Anal Appl 3(4):435á¾¢449

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhao G, Rose JL (2003) Boundary element modeling for defect characterization. Int J Solids Struct 40(11):2645á¾¢2658

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Gopalakrishnan .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gopalakrishnan, S., Ruzzene, M., Hanagud, S. (2011). Spectral Finite Element Method. In: Computational Techniques for Structural Health Monitoring. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-284-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-284-1_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-283-4

  • Online ISBN: 978-0-85729-284-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics