Advertisement

Introduction

  • Srinivasan Gopalakrishnan
  • Massimo Ruzzene
  • Sathyanarayana Hanagud
Chapter
Part of the Springer Series in Reliability Engineering book series (RELIABILITY)

Abstract

This chapter presents an introduction to Structural Health Monitoring (SHM), by defining the terminology, summarizing the most common techniques, and identifying outstanding research issues. The essential components of an SHM system are also outlined to highlight the important role of numerical simulations in SHM, which is the fundamental theme of this book. The chapter ends with a summary of the organization and contents of the book in order to guide the readers through its various parts.

Keywords

Acoustic Emission Fiber Bragg Grating Stress Intensity Factor Structural Health Monitoring Fiber Optic Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alleyne D, Cawley P (1991) A Two-dimensional Fourier transform method for the measurement of propagating multimode signals. J Acoust Soc Am 89:115968CrossRefGoogle Scholar
  2. 2.
    Anderson JD (1995) Computational fluid dynamics: basics with applications. McGraw Hill, New YorkGoogle Scholar
  3. 3.
    Anderson G (2006) Providing best value IVHM solutions for aging aircraft. In: 9th joint FAA/DOD/NASA conference on aging aircraft, Atlanta, USAGoogle Scholar
  4. 4.
    Basri R, Chiu WK (2004) Numerical analysis on the interaction of guided lamb waves with a local elastic stiffness reduction in quasi-isotropic composite plate structures. Compos Struct 66:8799CrossRefGoogle Scholar
  5. 5.
    Bathe KJ (1997) Finite element procedures. Printice Hall, Englewood CliffsGoogle Scholar
  6. 6.
    Becker AA (1990) Boundary element method. Mcgraw Hill, New YorkGoogle Scholar
  7. 7.
    Beskos DE, Narayanan GV (1983) Dynamic response of frameworks by numerical laplace transform. Comput Methods Appl Mech Eng 37:289ᾢ307MATHCrossRefGoogle Scholar
  8. 8.
    Cantrell JH, Yost WT (2001) Nonlinear ultrasonic characterization of fatigue microstructures. Int J Fatigue 23(1):487ᾢ490CrossRefGoogle Scholar
  9. 9.
    Cook RD, Malkus DS, Plesha ME, Witt RJ (2001) Concepts and applications of finite element analysis, 4th edn. Wiley, New YorkGoogle Scholar
  10. 10.
    Doebling SW, Farrar C, Prime MB, Daniel WS (1996) Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. LA-13070-MS, MayGoogle Scholar
  11. 11.
    Doyle JF (1997) Wave propagation in structures. Springer, New YorkMATHCrossRefGoogle Scholar
  12. 12.
    Evans MJ, Cawley P (1999) Measurement and prediction of diffuse fields in structures. J Acoust Soc Am 106:3348ᾢ3360CrossRefGoogle Scholar
  13. 13.
    Farrar C, James G (1987) System identification from ambient vibration measurements on a bridge. J Sound Vib 205:118Google Scholar
  14. 14.
    Giurgiutiu V (2005) Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J Intell Mater Syst Struct 16(4):291305CrossRefGoogle Scholar
  15. 15.
    Giurgiutiu V (2007) Structural health monitoring: with piezoelectric wafer active sensors. Academic Press, New YorkGoogle Scholar
  16. 16.
    Giurgiutiu V, Bao J, Zhao W (2003) Piezoelectric wafer active sensor embedded ultrasonics in beams and plates. Exp Mech 43(4):428449CrossRefGoogle Scholar
  17. 17.
    Gopalakrishnan S (2009) Modeling aspects in finite elements for structural health monitoring, encyclopedia on structural health monitoring, vol 2. Wiley, Chichester, pp 811ᾢ831, Chap. 43Google Scholar
  18. 18.
    Gopalakrishnan S, Chakraborty A, Roy Mahapatra D (2008) Spectral finite element method. Springer, LondonMATHGoogle Scholar
  19. 19.
    Ihn J-B, Chang FK (2003) Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics, 2004. Smart Mater Struct 13:609620Google Scholar
  20. 20.
    Kim JY, Jacobs LJ, Qu J, Littles JW (2006) Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J Acoust Soc Am 120(3):1266ᾢ1273CrossRefGoogle Scholar
  21. 21.
    Krezig E (1992) Advanced engineering mathematics, 9th edn. McGraw Hill, New YorkGoogle Scholar
  22. 22.
    Langley RS (2007) On the diffuse field reciprocity relationship and vibrational energy variance in a random subsystem at high frequencies. J Acoust Soc Am 121:913921Google Scholar
  23. 23.
    Lanza Di Scalea F, Salamone S (2008) Temperature effects in ultrasonic lamb wave structural health monitoring systems. J Acoust Soc Am 124(1):161ᾢ174CrossRefGoogle Scholar
  24. 24.
    Larose E, Roux P, Campillo M, Derode A (2008) Fluctuations of correlations and greens function reconstruction: role of scattering. Am Inst Phys 103:114907-1Google Scholar
  25. 25.
    Lee JW, Kim JD, Yun CB, Yi JH, Shim JM (2002) Health-monitoring method for bridges under ordinary traffic loadings. J Sound Vib 257(2):247ᾢ264CrossRefGoogle Scholar
  26. 26.
    de Luis J, Crawley EF (1987) Use of piezoelectric actuators as elements of intelligent structures. AIAA J 25:13731385Google Scholar
  27. 27.
    Master ZM, Michaels TE, Michaels JE (2007) Incident wave removal for defect enhancement in acoustic wavefield imaging. In: AIP conference Proceedings vol 894, pp 665ᾢ672Google Scholar
  28. 28.
    Michaels TE, Michaels JE, Mi B, Ruzzene M (2005) Damage detection in plate structures using sparse transducer arrays and acoustic wavefield imaging. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation, AIP 24A, 2005Google Scholar
  29. 29.
    Mustapha F, Manson G, Worden K, Pierce SG (2006) Damage location in an isotropic plate using a vector of novelty indices. Mech Syst Signal Process 21:18851906Google Scholar
  30. 30.
    Nagy PB (1998) Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36:375ᾢ381CrossRefGoogle Scholar
  31. 31.
    Oseguda R, Kreinovich V, Nazarian S, Roldan E (2003) Detection of cracks at rivet holes in thin plates using Lamb wave scanning. Proc SPIE 5047:55ᾢ66CrossRefGoogle Scholar
  32. 32.
    Prasad MS et al (2003) Imaging of defects in composite structures using guided ultrasonics. Proc SPIE 5062:700ᾢ703CrossRefGoogle Scholar
  33. 33.
    Prasad SM, Balasubramaniam K, Krishnamurthy CV (2004) Structural health monitoring of composite structures using lamb wave tomography. Smart Mater Struct 13:7379CrossRefGoogle Scholar
  34. 34.
    Prosser WH, Seale MD, Smith BT (1999) Time-frequency analysis of the dispersion of lamb modes. J Acoust Soc Am 105(5):26692676CrossRefGoogle Scholar
  35. 35.
    Raghavan A, Cesnik CES (2005) Finite-dimensional piezoelectric transducers modeling for guided wave based structural health monitoring. Smart Mater Struct 14:4481461CrossRefGoogle Scholar
  36. 36.
    Raghavan A, Cesnik CES (2007) Review of guided-wave structural health monitoring. Shock Vib Dig 39(2):91114CrossRefGoogle Scholar
  37. 37.
    Raghavan A, Cesnik CES (2007) Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring. Smart Mater Struct 16(2):355366CrossRefGoogle Scholar
  38. 38.
    Randall BR (2004) State of the art in monitoring rotating machinerypart 1. J Sound Vib 38:1421Google Scholar
  39. 39.
    Randall BR (2004) State of the art in monitoring rotating machinerypart 2. J Sound Vib 38:1017Google Scholar
  40. 40.
    Reddy JN (1985) Finite element method. McGraw Hill, New YorkGoogle Scholar
  41. 41.
    Rizzo P, Bartoli I, Marzani A, Lanzadi Scalea F (2005) Defect classification in pipes by neural network using multiple guided ultrasonic wave features extracted after wavelet processing. Trans ASME J Press Vessel Technol 127:294303Google Scholar
  42. 42.
    Rose JL (2002) A baseline and vision of ultrasonic guided wave inspection potential. J Press Vessel Technol 124:273ᾢ282CrossRefGoogle Scholar
  43. 43.
    Roux P, Sabra KG, Kuperman W, Roux A (2005) Ambient noise cross correlation in free space: theoretical approach. J Acoust Soc Am 117:79ᾢ84CrossRefGoogle Scholar
  44. 44.
    Ruzzene M (2007) Frequency/wavenumber filtering for improved damage visualization. Smart Mater Struct 16:21162129CrossRefGoogle Scholar
  45. 45.
    Sabra KG, Roux P, Kuperman WA (2005) Arrival-time structure of the time-averaged ambient noise cross-correlation function in an oceanic waveguide. J Acoust Soc Am 117:164ᾢ174CrossRefGoogle Scholar
  46. 46.
    Sabra KG, Winkel ES, Bourgoyne DA, Elbing BR, Ceccio SL, Perlin M, Dowling DR (2007) Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural health monitoring. J Acoust Soc Am 121:19872005CrossRefGoogle Scholar
  47. 47.
    Sabra KG, Srivastava A, Lanzadi Scalea F, Bartoli I, Rizzo P, Conti S (2008) Structural health monitoring by extraction of coherent guided waves from diffuse fields. J Acoust Soc Am 123:EL8ᾢEL13CrossRefGoogle Scholar
  48. 48.
    Salvino L, Purekar A, Pines DJ (2005) Health monitoring of 2-D plates using EMD and hilbert phase. In: Proceedings of the 4th international workshop on structural health monitoring, Stanford University, CAGoogle Scholar
  49. 49.
    Shapiro NM, Campillo M, Stehly L, Ritzwoller M (2005) High resolution surface-wave tomography from ambient seismic noise. Science 29:1615ᾢ1617CrossRefGoogle Scholar
  50. 50.
    Sharma V, Ruzzene M, Hanagud S (2006) Damage index estimation in beams and plates using laser vibrometry. AIAA J 44:919923CrossRefGoogle Scholar
  51. 51.
    Sohn H, Farrar CR, Hemez FM, Czarnecki JJ, Shunk DD, Stinemates DW, Nadler BR (2003) A review of structural health monitoring literature: 19962001. Los Alamos National Laboratory Report, LA-13976-MSGoogle Scholar
  52. 52.
    Staszewski WJ, Boller C, Tomlinson G (2004) Health monitoring of aerospace structures. Smart sensors and signal processing. Wiley, ChichesterGoogle Scholar
  53. 53.
    Staszewski WJ, Lee BC, Mallet L, Scarpa F (2004) Structural health monitoring using laser vibrometry. Part I and II. Smart Mater Struct 13:251269CrossRefGoogle Scholar
  54. 54.
    Su Z, Ye L (2004) An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network. Smart Mater Struct 13(4):957969CrossRefGoogle Scholar
  55. 55.
    Varadan VK, Vinoy KJ, Gopalakrishnan S (2006) Smart material systems and MEMS. Wiley, ChichesterCrossRefGoogle Scholar
  56. 56.
    Viktorov IA (1967) Rayleigh and lamb waves. Plenum, New YorkGoogle Scholar
  57. 57.
    Weaver RL (1982) On diffuse waves in solid media. J Acoust Soc Am 71:1608ᾢ1609CrossRefGoogle Scholar
  58. 58.
    Weaver RL (1984) Diffuse waves in finite plates. J Sound Vib 94:319335CrossRefGoogle Scholar
  59. 59.
    Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Phys Rev Lett 87:134301CrossRefGoogle Scholar
  60. 60.
    Worden K, Dulieu-Barton JM (2004) An overview of intelligent fault detection in systems and structures. Int J Struct Health Monit 3:8598Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Srinivasan Gopalakrishnan
    • 1
  • Massimo Ruzzene
    • 2
  • Sathyanarayana Hanagud
    • 3
  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.School of Aerospace Engineering, School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.School of Aerospace EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations