Laser/Light Applications in Neurology and Neurosurgery

  • Marlon S. Mathews
  • David Abookasis
  • Mark E. Linskey


Applications of light in neurology and neurosurgery can be diagnostic or therapeutic.

Neurophotonics is the science of photon interaction with neural tissue.

Photodynamic therapy (PDT) has been attempted to destroy infiltrative tumor cells in tissue.

Spatially modulated imaging (MI) is a newly described non-contact optical technique in the spatial domain. With this technique, both quantitative mapping of tissue optical properties within a single measurement and cross sectional optical tomography can be achieved rapidly.

The ability to control the activity of a defined class of neurons has the potential to advance clinical neuromodulation.


Optical Coherence Tomography Deep Brain Stimulation Retinal Nerve Fiber Layer Thickness Vestibular Schwannomas Dorsal Root Entry Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors of this chapter are grateful to Samarendra K. Mohanty, Ph.D. and Professor Anthony J. Durkin, Ph.D., for their insightful discussions and comments.


  1.  1.
    Gratton G, Fabiani M, Elbert T, Rockstroh B. Seeing right through you: applications of optical imaging to the study of the human brain. Psychophysiology. 2003;40(4):487-491.PubMedCrossRefGoogle Scholar
  2.  2.
    Cohen LB. Changes in neuron structure during action potential propagation and synaptic transmission. Physiol Rev. 1972;53:373-417.Google Scholar
  3.  3.
    Stepnoski RA, LaPorta A, Raccuia-Behling F, Blonder GE, Slusher RE, Kleinfeld D. Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc Natl Acad Sci U S A. 1991;88:9382-9386.PubMedCrossRefGoogle Scholar
  4.  4.
    Frostig RD, Lieke EE, Ts’o DY, Grinvald A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci U S A. 1990;87:6082-6086.PubMedCrossRefGoogle Scholar
  5.  5.
    Rector DM, Harper RM, George JS. In vivo observations of rapid scattered-light changes associated with electrical events. In: Frostig RD, ed. In Vivo Optical Imaging of Brain Function. Boca Raton: CRC Press; 2002:93-112.Google Scholar
  6.  6.
    Rector DM, Poe GR, Kristensen MP, Harper RM. Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation. J Neurophysiol. 1997;78:1707-1713.PubMedGoogle Scholar
  7.  7.
    Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature. 1986;324:361-364.PubMedCrossRefGoogle Scholar
  8.  8.
    Malonek D, Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science. 1996;272:551-554.PubMedCrossRefGoogle Scholar
  9.  9.
    Franceschini MA, Fantini S, Thompson JH, Culver JP, Boas DA. Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging. Psychophysiology. 2003;40:548-560.PubMedCrossRefGoogle Scholar
  10. 10.
    Jöbsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198:1264-1267.PubMedCrossRefGoogle Scholar
  11. 11.
    Wyatt JS, Cope M, Delpy DT, et al. Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy. J Appl Physiol. 1990;68(3):1086-1091.PubMedGoogle Scholar
  12. 12.
    Gratton G, Sarno AJ, Maclin E, Corballis PM, Fabiani M. Toward non-invasive 3-D imaging of the time course of cortical activity: investigation of the depth of the event-related optical signal (EROS). Neuroimage. 2000;11:491-504.PubMedCrossRefGoogle Scholar
  13. 13.
    Fantini S, Hueber D, Franceschini MA, et al. Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy. Phys Med Biol. 1999;44(6):1543-1563.PubMedCrossRefGoogle Scholar
  14. 14.
    Brady KM, Lee JK, Kibler KK, et al. Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke. 2007;38(10):2818-2825 [Epub ahead of print].PubMedCrossRefGoogle Scholar
  15. 15.
    Cuccia DJ, Bevilacqua F, Durkin AJ, Tromberg BJ. Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain. Opt Lett. 2005;30(11):1354-1356.PubMedCrossRefGoogle Scholar
  16. 16.
    Hashimoto K, Uruma G, Abo M. Activation of the prefrontal cortex during the Wisconsin card sorting test (Keio version) as measured by two-channel near-infrared spectroscopy in patients with traumatic brain injury. Eur Neurol. 2007;59(1-2):24-30.PubMedCrossRefGoogle Scholar
  17. 17.
    Moritz S, Kasprzak P, Arlt M, Taeger K, Metz C. Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology. 2007;107(4):563-569.PubMedCrossRefGoogle Scholar
  18. 18.
    Calderon-Arnulphi M, Alaraj A, Amin-Hanjani S, et al. Detection of cerebral ischemia in neurovascular surgery using quantitative frequency-domain near-infrared spectroscopy. J Neurosurg. 2007;106(2):283-290.PubMedCrossRefGoogle Scholar
  19. 19.
    Bhatia R, Hampton T, Malde S, et al. The application of near-infrared oximetry to cerebral monitoring during aneurysm embolization: a comparison with intraprocedural angiography. J Neurosurg Anesthesiol. 2007;19(2):97-104.PubMedCrossRefGoogle Scholar
  20. 20.
    Boppart SA. Optical coherence tomography: technology and applications for neuroimaging. Psychophysiology. 2003;40(4):529-541.PubMedCrossRefGoogle Scholar
  21. 21.
    Chen-Bee CH, Agoncillo T, Xiong Y, Frostig RD. The triphasic intrinsic signal: implications for functional imaging. J Neurosci. 2007;27(17):4572-4586.PubMedCrossRefGoogle Scholar
  22. 22.
    Bahar S, Suh M, Zhao M, Schwartz TH. Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’. NeuroReport. 2006;17(5):499-503.PubMedCrossRefGoogle Scholar
  23. 23.
    Pouratian N, Cannestra AF, Martin NA, Toga AW. Intraoperative optical intrinsic signal imaging: a clinical tool for functional brain mapping. Neurosurg Focus. 2002;13(4):e1.PubMedCrossRefGoogle Scholar
  24. 24.
    Bohringer HJ, Lankenau E, Rohde V, Huttmann G, Giese A. Optical coherence tomography for experimental neuroendoscopy. Minim Invasive Neurosurg. 2006;49(5):269-275.PubMedCrossRefGoogle Scholar
  25. 25.
    Bohringer HJ, Boller D, Leppert J, et al. Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue. Lasers Surg Med. 2006;38(6):588-597.PubMedCrossRefGoogle Scholar
  26. 26.
    Soliman W, Larsen M, Sander B, Wegener M, Milea D. Optical coherence tomography of astrocytic hamartomas in tuberous sclerosis. Acta Ophthalmol Scand. 2007;85(4):454-455.PubMedCrossRefGoogle Scholar
  27. 27.
    Paquet C, Boissonnot M, Roger F, Dighiero P, Gil R, Hugon J. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett. 2007;420(2):97-99.PubMedCrossRefGoogle Scholar
  28. 28.
    Sepulcre J, Murie-Fernandez M, Salinas-Alaman A, Garcia-Layana A, Bejarano B, Villoslada P. Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology. 2007;68(18):1488-1494.PubMedCrossRefGoogle Scholar
  29. 29.
    Jafri MS, Farhang S, Tang RS, et al. Optical coherence tomography in the diagnosis and treatment of neurological disorders. J Biomed Opt. 2005;10(5):051603.PubMedCrossRefGoogle Scholar
  30. 30.
    Mayer HM, Brock M, Berlien HP, Weber B. Percutaneous endoscopic laser discectomy (PELD). A new surgical technique for non-sequestrated lumbar discs. Acta Neurochir Suppl (Wien). 1992;54:53-58.CrossRefGoogle Scholar
  31. 31.
    Boult M, Fraser RD, Jones N, et al. Percutaneous endoscopic laser discectomy. Aust N Z J Surg. 2000;70(7):475-479.PubMedCrossRefGoogle Scholar
  32. 32.
    Choy DS, Hellinger J, Tassi GP, Hellinger S. Percutaneous laser disc decompression. Photomed Laser Surg. 2007;25(1):60.PubMedGoogle Scholar
  33. 33.
    Choy DS. Percutaneous laser disc decompression: a 17-year experience. Photomed Laser Surg. 2004;22(5):407-410; Review.PubMedCrossRefGoogle Scholar
  34. 34.
    McLone DG, Naidich TP. Laser resection of fifty spinal lipomas. Neurosurgery. 1986;18(5):611-615.PubMedCrossRefGoogle Scholar
  35. 35.
    Maira G, Fernandez E, Pallini R, Puca A. Total excision of spinal lipomas using CO2 laser at low power. Experimental and clinical observations. Neurol Res. 1986;8(4):225-230.PubMedGoogle Scholar
  36. 36.
    Heppner F, Ascher PW, Holzer P, Mokry M. CO2 laser surgery of intramedullary spinal cord tumors. Lasers Surg Med. 1987;7(2):180-183.PubMedCrossRefGoogle Scholar
  37. 37.
    Ascher PW, Heppner F. CO2-Laser in neurosurgery. Neurosurg Rev. 1984;7(2-3):123-133.PubMedCrossRefGoogle Scholar
  38. 38.
    Powers SK, Edwards MS, Boggan JE, et al. Use of the argon surgical laser in neurosurgery. J Neurosurg. 1984;60(3):523-530.PubMedCrossRefGoogle Scholar
  39. 39.
    Yahr WZ, Strully KJ, Hurwitt ES. Non-occluise small arterial anastomosis with a neodymium laser. Surg Forum. 1964;15:224-226.PubMedGoogle Scholar
  40. 40.
    Jain KK, Gorisch W. Repair of small blood vessels with the neodymium-YAH laser: a preliminary report. Surgery. 1979;85:684.PubMedGoogle Scholar
  41. 41.
    Frazier OH, Painvin GA, Morris JR, Thomsen S, Neblett CR. ­Laser-assisted microvascular anastomoses: angiographic and anatomopathologic studies on growing microvascular anastomoses: preliminary report. Surgery. 1985;97(5):585-590.PubMedGoogle Scholar
  42. 42.
    Quigley MR, Bailes JE, Kwaan HC, Cerullo LJ, Block S. Comparison of myointimal hyperplasia in laser-assisted and suture anastomosed arteries. A preliminary report. J Vasc Surg. 1986;4(3):217-219.PubMedGoogle Scholar
  43. 43.
    Quigley MR, Bailes JE, Kwaan HC, Cerullo LJ, Brown JT. Aneurysm formation after low power carbon dioxide laser-assisted vascular anastomosis. Neurosurgery. 1986;18(3):292-299.PubMedCrossRefGoogle Scholar
  44. 44.
    Shapiro S, Sartorius C, Sanders S, Clark S. Microvascular end-to-side arterial anastomosis using the Nd: YAG laser. Neurosurgery. 1989;25(4):584-588; discussion 588-589.PubMedCrossRefGoogle Scholar
  45. 45.
    Tulleken CA, van Dieren A, Verdaasdonk RM, Berendsen W. End-to-side anastomosis of small vessels using an Nd:YAG laser with a hemispherical contact probe. Technical note. J Neurosurg. 1992;76(3):546-549.PubMedCrossRefGoogle Scholar
  46. 46.
    Tulleken CA, Verdaasdonk RM, Berendsen W, Mali WP. Use of the excimer laser in high-flow bypass surgery of the brain. J Neurosurg. 1993;78(3):477-480.PubMedCrossRefGoogle Scholar
  47. 47.
    Tulleken CA, van der Zwan A, van Rooij WJ, Ramos LM. High-flow bypass using nonocclusive excimer laser-assisted end-to-side anastomosis of the external carotid artery to the P1 segment of the posterior cerebral artery via the sylvian route. Technical note. J Neurosurg. 1998;88(5):925-927.PubMedCrossRefGoogle Scholar
  48. 48.
    White RA, Kopchok GE, Donayre CE, et al. Mechanism of tissue fusion in argon laser-welded vein-artery anastomoses. Lasers Surg Med. 1988;8(1):83-89.PubMedCrossRefGoogle Scholar
  49. 49.
    Teramura A, Macfarlane R, Owen CJ, et al. Application of the 1-microsecond pulsed-dye laser to the treatment of experimental cerebral vasospasm. J Neurosurg. 1991;75(2):271-276.PubMedCrossRefGoogle Scholar
  50. 50.
    Macfarlane R, Teramura A, Owen CJ, et al. Treatment of vasospasm with a 480-nm pulsed-dye laser. J Neurosurg. 1991;75(4):613-622.PubMedCrossRefGoogle Scholar
  51. 51.
    Kaoutzanis MC, Peterson JW, Anderson RR, McAuliffe DJ, Sibilia RF, Zervas NT. Basic mechanism of in vitro pulsed-dye laser-induced vasodilation. J Neurosurg. 1995;82(2):256-261.PubMedCrossRefGoogle Scholar
  52. 52.
    Takizawa T, Yamazaki T, Miura N, et al. Laser surgery of basal, orbital and ventricular meningiomas which are difficult to extirpate by conventional methods. Neurol Med Chir (Tokyo). 1980;20(7):729-737.CrossRefGoogle Scholar
  53. 53.
    Beck OJ. The use of the Nd-YAG and the CO2 laser in neurosurgery. Neurosurg Rev. 1980;3(4):261-266.PubMedCrossRefGoogle Scholar
  54. 54.
    Roux FX, Leriche B, Cioloca C, Devaux B, Turak B, Nohra G. Combined CO2 and Nd-YAG laser in neurosurgical practice. A 1st experience apropos of 40 intracranial procedures. Neurochirurgie. 1992;38(4):235-237.PubMedGoogle Scholar
  55. 55.
    Lombard GF, Luparello V, Peretta P. Statistical comparison of surgical results with or without laser in neurosurgery. Neurochirurgie. 1992;38(4):226-228.PubMedGoogle Scholar
  56. 56.
    Desgeorges M, Sterkers O, Ducolombier A, et al. Laser microsurgery of meningioma. An analysis of a consecutive series of 164 cases treated surgically by using different lasers. Neurochirurgie. 1992;38(4):217-225.PubMedGoogle Scholar
  57. 57.
    Waidhauser E, Beck OJ, Oeckler RC. Nd:YAG-laser in the microsurgery of frontobasal meningiomas. Lasers Surg Med. 1990;10(6):544-550.PubMedCrossRefGoogle Scholar
  58. 58.
    Eiras J, Alberdi J, Gomez J. Laser CO2 in the surgery of acoustic neuroma. Neurochirurgie. 1993;39(1):16-21.PubMedGoogle Scholar
  59. 59.
    Takeuchi J, Handa H, Taki W, Yamagami T. The Nd:YAG laser in neurological surgery. Surg Neurol. 1982;18(2):140-142.PubMedCrossRefGoogle Scholar
  60. 60.
    Oekler RTC, Beck HC, Frank F. Surgery of the sellar region with the Nd:YAG laser. Fortschr Med. 1984;9:218-220.Google Scholar
  61. 61.
    Bevilacqua F, Piguet D, Marque P, Gross JD, Tromberg BJ, Depeursinge C. In vivo local determination of tissue optical properties: applications to human brain. Appl Opt. 1999;38:4939-4950.PubMedCrossRefGoogle Scholar
  62. 62.
    Lin WC, Toms SA, Johnson M, Jansen ED, Mahadevan-Jansen A. In vivo brain tumor demarcation using optical spectroscopy. Photochem Photobiol. 2001;73(4):396-402.PubMedCrossRefGoogle Scholar
  63. 63.
    Toms SA, Lin WC, Weil RJ, Johnson MD, Jansen ED, Mahadevan-Jansen A. Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity. Neurosurgery. 2005;57(4 suppl):382-391.PubMedCrossRefGoogle Scholar
  64. 64.
    Amharref N, Beljebbar A, Dukic S, et al. Brain tissue characterisation by infrared imaging in a rat glioma model. Biochim Biophys Acta. 2006;1758(7):892-899.PubMedCrossRefGoogle Scholar
  65. 65.
    Leppert J, Krajewski J, Kantelhardt SR, et al. Multiphoton ­excitation of autofluorescence for microscopy of glioma tissue. Neurosurgery. 2006;58(4):759-767.PubMedCrossRefGoogle Scholar
  66. 66.
    Simpson JR, Horton J, Scott C, et al. Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys. 1993;26(2):239-244.PubMedCrossRefGoogle Scholar
  67. 67.
    Poon WS, Schomacker KT, Deutsch TF, Martuza RL. Laser-induced fluorescence: experimental intraoperative delineation of tumor resection margins. J Neurosurg. 1992;76(4):679-686.PubMedCrossRefGoogle Scholar
  68. 68.
    Hebeda KM, Wolbers JG, Sterenborg HJ, Kamphorst W, van Gemert MJ, van Alphen HA. Fluorescence localization in tumour and normal brain after intratumoral injection of haematoporphyrin derivative into rat brain tumour. J Photochem Photobiol B. 1995;27(1):85-92.PubMedCrossRefGoogle Scholar
  69. 69.
    Stummer W, Pichlmeier U, Meinel T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392-401.PubMedCrossRefGoogle Scholar
  70. 70.
    Stummer W, Stocker S, Wagner S, et al. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery. 1998;42(3):518-525; discussion 525-526.PubMedCrossRefGoogle Scholar
  71. 71.
    Soliman GSH, Truper HG. Halobacterium pharaonis: a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zentralbl Bakteriol A. 1982;3:318-329.Google Scholar
  72. 72.
    Madsen SJ, Angell-Petersen E, Spetalen S, Carper SW, Ziegler SA, Hirschberg H. Photodynamic therapy of newly implanted glioma cells in the rat brain. Lasers Surg Med. 2006;38(5):540-548.PubMedCrossRefGoogle Scholar
  73. 73.
    Muller PJ, Wilson BC. Photodynamic therapy for recurrent supratentorial gliomas. Semin Surg Oncol. 1995;11(5):346-354.PubMedCrossRefGoogle Scholar
  74. 74.
    Popovic EA, Kaye AH, Hill JS. Photodynamic therapy of brain tumors. Semin Surg Oncol. 1995;11(5):335-345.PubMedCrossRefGoogle Scholar
  75. 75.
    Muller PJ, Wilson BC. An update on the penetration depth of 630 nm light in normal and malignant human brain tissue in vivo. Phys Med Biol. 1986;31(11):1295-1297.PubMedCrossRefGoogle Scholar
  76. 76.
    Schmidt MH, Reichert KW 2nd, Ozker K, et al. Preclinical evaluation of benzoporphyrin derivative combined with a light-emitting diode array for photodynamic therapy of brain tumors. Pediatr Neurosurg. 1999;30(5):225-231.PubMedCrossRefGoogle Scholar
  77. 77.
    Hirschberg H, Sorensen DR, Angell-Petersen E, et al. Repetitive photodynamic therapy of malignant brain tumors. J Environ Pathol Toxicol Oncol. 2006;25(1-2):261-279.PubMedGoogle Scholar
  78. 78.
    Mathews MS, Sun C, Madsen SJ, Hirschberg H. Comparing the effects of repetitive and chronic PDT in human glioma spheroids. Proc SPIE. 2007;6424(D):D1-D9.Google Scholar
  79. 79.
    Bisland SK, Lilge L, Lin A, Rusnov R, Wilson BC. Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors. Photochem Photobiol. 2004;80:22-30.PubMedCrossRefGoogle Scholar
  80. 80.
    Madsen SJ, Sun CH, Tromberg BJ, Yeh AT, Sanchez R, Hirschberg H. Effects of combined photodynamic therapy and ionizing ­radiation on human glioma spheroids. Photochem Photobiol. 2002;76(4):411-416.PubMedCrossRefGoogle Scholar
  81. 81.
    Hirschberg H, Sun CH, Tromberg BJ, Yeh AT, Madsen SJ. Enhanced cytotoxic effects of 5-aminolevulinic acid-mediated photodynamic therapy by concurrent hyperthermia in glioma spheroids. J Neurooncol. 2004;70(3):289-299.PubMedCrossRefGoogle Scholar
  82. 82.
    Mathews MS, Sanchez RC, Sun C, Madsen SJ, Hirschberg H. The Effect of motexafin gadolinium on ALA photodynamic therapy in glioma spheroids. Proc SPIE. 2008;6842:68422N1-68422N7.Google Scholar
  83. 83.
    Hirschberg H, Madsen S, Lote K, Pham T, Tromberg B. An indwelling brachytherapy balloon catheter: potential use as an intracranial light applicator for photodynamic therapy. J Neurooncol. 1999;44(1):15-21.PubMedCrossRefGoogle Scholar
  84. 84.
    Salcman M, Samaras GM. Hyperthermia for brain tumors: biophysical rationale. Neurosurgery. 1981;9(3):327-335.PubMedCrossRefGoogle Scholar
  85. 85.
    Sneed PK, Stauffer PR, McDermott MW, et al. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/− hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 1998;40(2):287-295.PubMedCrossRefGoogle Scholar
  86. 86.
    Sugiyama K, Sakai T, Fujishima I, Ryu H, Uemura K, Yokoyama T. Stereotactic interstitial laser-hyperthermia using Nd-YAG laser. Stereotact Funct Neurosurg. 1990;54–55:501-505.PubMedCrossRefGoogle Scholar
  87. 87.
    Sakai T, Fujishima I, Sugiyama K, Ryu H, Uemura K. Interstitial laserthermia in neurosurgery. J Clin Laser Med Surg. 1992;10(1):37-40.PubMedGoogle Scholar
  88. 88.
    Nowak G, Rentzsch O, Terzis AJ, Arnold H. Induced hyperthermia in brain tissue: comparison between contact Nd:YAG laser system and automatically controlled high frequency current. Acta Neurochir (Wien). 1990;102(1–2):76-81.CrossRefGoogle Scholar
  89. 89.
    Terzis AJ, Nowak G, Mueller E, Rentzsch O, Arnold H. Induced hyperthermia in brain tissue in vivo. Acta Neurochir Suppl (Wien). 1994;60:406-409.Google Scholar
  90. 90.
    Menovsky T, Beek JF, van Gemert MJ, Roux FX, Bown SG. Interstitial laser thermotherapy in neurosurgery: a review. Acta Neurochir (Wien). 1996;138(9):1019-1026.CrossRefGoogle Scholar
  91. 91.
    Marmulla R, Eggers G, Muhling J. Laser surface registration for lateral skull base surgery. Minim Invasive Neurosurg. 2005;48(3):181-185.PubMedCrossRefGoogle Scholar
  92. 92.
    Schicho K, Figl M, Seemann R, et al. Comparison of laser surface scanning and fiducial marker-based registration in frameless stereotaxy. Technical note. J Neurosurg. 2007;106(4):704-709.PubMedCrossRefGoogle Scholar
  93. 93.
    Sinha TK, Miga MI, Cash DM, Weil RJ. Intraoperative cortical surface characterization using laser range scanning: preliminary results. Neurosurgery. 2006;59(4 suppl 2):ONS368-ONS376; discussion ONS376-ONS377.PubMedGoogle Scholar
  94. 94.
    Kelly PJ, Kall BA, Goerss S, Cascino TL. Results of computer-assisted stereotactic laser resection of deep-seated intracranial lesions. Mayo Clin Proc. 1986;61(1):20-27.PubMedGoogle Scholar
  95. 95.
    Kelly PJ, Kall BA, Goerss S, Earnest F 4th. Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms. J Neurosurg. 1986;64(3):427-439.PubMedCrossRefGoogle Scholar
  96.  96.
    Abernathey CD, Davis DH, Kelly PJ. Future perspectives in stereotactic neurosurgery: stereotactic microsurgical removal of deep brain tumors. J Neurosurg Sci. 1989;33(1):149-154.Google Scholar
  97.  97.
    Powers SK, Barbaro NM, Levy RM. Pain control with laser-­produced dorsal root entry zone lesions. Appl Neurophysiol. 1988;51(2-5):243-254.PubMedGoogle Scholar
  98.  98.
    Fink RA. Neurosurgical treatment of nonmalignant intractable rectal pain: microsurgical commissural myelotomy with the carbon dioxide laser. Neurosurgery. 1984;14(1):64-65.PubMedCrossRefGoogle Scholar
  99.  99.
    Powers SK, Adams JE, Edwards MS, Boggan JE, Hosobuchi Y. Pain relief from dorsal root entry zone lesions made with argon and carbon dioxide microsurgical lasers. J Neurosurg. 1984;61(5):841-847.PubMedCrossRefGoogle Scholar
  100. 100.
    Nashold BS Jr. Current status of the DREZ operation: 1984. Neurosurgery. 1984;15(6):942-944.PubMedCrossRefGoogle Scholar
  101. 101.
    Kelly PJ, Sharbrough FW, Kall BA, Goerss SJ. Magnetic resonance imaging-based computer-assisted stereotactic resection of the hippocampus and amygdala in patients with temporal lobe epilepsy. Mayo Clin Proc. 1987;62(2):103-108.PubMedGoogle Scholar
  102. 102.
    Bebin EM, Kelly PJ, Gomez MR. Surgical treatment for epilepsy in cerebral tuberous sclerosis. Epilepsia. 1993;34(4):651-657.PubMedCrossRefGoogle Scholar
  103. 103.
    Bucholz RD, Pittman T. Endoscopic coagulation of the choroid plexus using the Nd:YAG laser: initial experience and proposal for management. Neurosurgery. 1991;28(3):421-426; discussion 426–427.PubMedCrossRefGoogle Scholar
  104. 104.
    Vandertop WP, Verdaasdonk RM, van Swol CF. Laser-assisted neuroendoscopy using a neodymium-yttrium aluminum garnet or diode contact laser with pretreated fiber tips. J Neurosurg. 1998;88(1):82-92.PubMedCrossRefGoogle Scholar
  105. 105.
    Powers SK. Fenestration of intraventricular cysts using a flexible, steerable endoscope and the argon laser. Neurosurgery. 1986;18(5):637-641.PubMedCrossRefGoogle Scholar
  106. 106.
    Zamorano L, Chavantes C, Dujovny M, Malik G, Ausman J. Stereotactic endoscopic interventions in cystic and intraventricular brain lesions. Acta Neurochir Suppl (Wien). 1992;54:69-76.CrossRefGoogle Scholar
  107. 107.
    Otsuki T, Jokura H, Yoshimoto T. Stereotactic guiding tube for open-system endoscopy: a new approach for the stereotactic endoscopic resection of intra-axial brain tumors. Neurosurgery. 1990;27(2):326-330.PubMedCrossRefGoogle Scholar
  108. 108.
    Menovsky T, Beek JF, Thomsen SL. Laser(-assisted) nerve repair. A review. Neurosurg Rev. 1995;18(4):225-235.PubMedCrossRefGoogle Scholar
  109. 109.
    Almquist EE, Nachemson A, Auth D, Almquist B, Hall S. Evaluation of the use of the argon laser in repairing rat and primate nerves. J Hand Surg Am. 1984;9(6):792-799.PubMedGoogle Scholar
  110. 110.
    Fischer DW, Beggs JL, Kenshalo DL Jr, Shetter AG. Comparative study of microepineurial anastomoses with the use of CO2 laser and suture techniques in rat sciatic nerves: Part 1. Surgical ­technique, nerve action potentials, and morphological studies. Neurosurgery. 1985;17(2):300-308.PubMedCrossRefGoogle Scholar
  111. 111.
    Seifert V, Stolke D. Laser-assisted reconstruction of the oculomotor nerve: experimental study on the feasibility of cranial nerve repair. Neurosurgery. 1989;25(4):579-582; discussion 582-583.PubMedCrossRefGoogle Scholar
  112. 112.
    Bailes JE, Cozzens JW, Hudson AR, et al. Laser-assisted nerve repair in primates. J Neurosurg. 1989;71(2):266-272.PubMedCrossRefGoogle Scholar
  113. 113.
    Huang TC, Blanks RH, Berns MW, Crumley RL. Laser vs. suture nerve anastomosis. Otolaryngol Head Neck Surg. 1992;107(1):14-20.PubMedGoogle Scholar
  114. 114.
    Maragh H, Hawn RS, Gould JD, Terzis JK. Is laser nerve repair comparable to microsuture coaptation? J Reconstr Microsurg. 1988;4(3):189-195.PubMedCrossRefGoogle Scholar
  115. 115.
    Campion ER, Bynum DK, Powers SK. Repair of peripheral nerves with the argon laser. A functional and histological evaluation. J Bone Joint Surg Am. 1990;72(5):715-723.PubMedGoogle Scholar
  116. 116.
    Korff M, Bent SW, Havig MT, Schwaber MK, Ossoff RH, Zealear DL. An investigation of the potential for laser nerve welding. Otolaryngol Head Neck Surg. 1992;106(4):345-350.PubMedGoogle Scholar
  117. 117.
    Menovsky T, Beek JF. Laser, fibrin glue, or suture repair of peripheral nerves: a comparative functional, histological, and morphometric study in the rat sciatic nerve. J Neurosurg. 2001;95(4):694-699.PubMedCrossRefGoogle Scholar
  118. 118.
    Abookasis D, Mathews MS, Lay C, Frostig RD, Tromberg BJ. Modulated imaging: a novel method for quantifying tissue ­chromophores in evolving cerebral ischemia. Proc SPIE. 2007;6511:65110A1-65110A9.Google Scholar
  119. 119.
    Wells J, Kao C, Mariappan K, et al. Optical stimulation of neural tissue in vivo. Opt Lett. 2005;30(5):504-506.PubMedCrossRefGoogle Scholar
  120. 120.
    Wells J, Kao C, Konrad P, et al. Biophysical mechanisms of ­transient optical stimulation of peripheral nerve. Biophys J. 2007;93(7):2567-2580.PubMedCrossRefGoogle Scholar
  121. 121.
    Wells J, Kao C, Jansen ED, Konrad P, Mahadevan-Jansen A. Application of infrared light for in vivo neural stimulation. J Biomed Opt. 2005;10(6):064003.PubMedCrossRefGoogle Scholar
  122. 122.
    Callaway EM, Katz LC. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci U S A. 1993;90:7661-7665.PubMedCrossRefGoogle Scholar
  123. 123.
    Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH. Light activated ion channels for remote control of neuronal firing. Nat Neurosci. 2004;7:1381-1386.PubMedCrossRefGoogle Scholar
  124. 124.
    Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci. 2003;100:13940-13945.PubMedCrossRefGoogle Scholar
  125. 125.
    Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci. 2007;8(8):577-581.PubMedCrossRefGoogle Scholar
  126. 126.
    Taga G, Homae F, Watanabe H. Effects of source-detector distance of near infrared spectroscopy on the measurement of the cortical hemodynamic response in infants. Neuroimage. 2007;38(3):452-460 [Epub ahead of print].PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Marlon S. Mathews
    • 1
  • David Abookasis
    • 2
  • Mark E. Linskey
    • 3
  1. 1.Department of NeurosurgeryUniversity of California IrvineIrvineUSA
  2. 2.Beckman Laser Institute and Medical ClinicUniversity of CaliforniaIrvineUSA
  3. 3.Department of Neurological SurgeryUniversity of CaliforniaIrvineUSA

Personalised recommendations