Advertisement

Laser/Light Applications in Ophthalmology: Posterior Segment Applications

  • Amy C. Schefler
  • Charles C. Wykoff
  • Timothy G. Murray
Chapter

Abstract

Among medical fields, ophthalmology has perhaps the richest history with regard to the widespread application of laser technologies. The first experimental use of laser in ophthalmology was that of the German ophthalmologist Gerd Meyer-Schwickerath, who began using the Beck arc in 1949.1,2 By 1954, Meyer-Schwickerath had treated 41 patients with the xenon arc photocoagulator and by 1957, he reported that he was able to close 82 macular holes with this technology.1 Working together with Littmann from the Carl Zeiss Company, he created a similar xenon arc photocoagulator which became available for widespread ophthalmic applications in the late 1960s and was used more frequently in the 1970s. Since then, lasers have been used with notable success for a wide variety of ophthalmic conditions including refractive error, glaucoma, lens-related conditions such as posterior capsular opacification, and retinal conditions including diabetic retinopathy and age-related macular degeneration.

Keywords

Macular Edema Macular Hole Diabetic Macular Edema Proliferative Diabetic Retinopathy Uveal Melanoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Disclaimer

No conflict of interest or financial interest exists for any author.

References

  1. 1.
    Abramson DH. The focal treatment of retinoblastoma with emphasis on xenon arc photocoagulation. Acta Ophthalmol Suppl. 1989;194:3-63.PubMedGoogle Scholar
  2. 2.
    Neubauer AS, Ulbig MW. Laser treatment in diabetic retinopathy. Ophthalmologica. 2007;221(2):95-102.PubMedCrossRefGoogle Scholar
  3. 3.
    Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy: the second report of diabetic retinopathy study findings. Ophthalmology. 1978;85(1):82-106.Google Scholar
  4. 4.
    Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Ophthalmology. 1991;98(5 Suppl):766-785.Google Scholar
  5. 5.
    The Diabetic Retinopathy Study Research Group. Preliminary report on effects of photocoagulation therapy. Am J Ophthalmol. 1976;81(4):383-396.Google Scholar
  6. 6.
    The Diabetic Retinopathy Study Research Group. Indications for photocoagulation treatment of diabetic retinopathy: Diabetic Retinopathy Study Report no. 14. Int Ophthalmol Clin. 1987;27(4):239-253.CrossRefGoogle Scholar
  7. 7.
    Early Treatment Diabetic Retinopathy Study Research Group. Focal photocoagulation treatment of diabetic macular edema. Relationship of treatment effect to fluorescein angiographic and other retinal characteristics at baseline: ETDRS report no. 19. Arch Ophthalmol. 1995;113(9):1144-1155.Google Scholar
  8. 8.
    Ferris FL 3rd, Davis MD, Aiello LM. Treatment of diabetic retinopathy. N Engl J Med. 1999;341(9):667-678.PubMedCrossRefGoogle Scholar
  9. 9.
    Macular Photocoagulation Study Group. Laser photocoagulation for juxtafoveal choroidal neovascularization. Five-year results from randomized clinical trials. Arch Ophthalmol. 1994;112(4):500-509.Google Scholar
  10. 10.
    Preferred practice pattern: diabetic retinopathy. 2003. Accessed at http://www.aao.org/education/library/pppdr_new.cfm.
  11. 11.
    Fong DS, Strauber SF, Aiello LP, et al. Comparison of the modified Early Treatment Diabetic Retinopathy Study and mild macular grid laser photocoagulation strategies for diabetic macular edema. Arch Ophthalmol. 2007;125(4):469-480.PubMedCrossRefGoogle Scholar
  12. 12.
    The Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS report number 8. Ophthalmology. 1981;88(7):583-600.Google Scholar
  13. 13.
    Macular Photocoagulation Study (MPS) Group. Evaluation of argon green vs krypton red laser for photocoagulation of subfoveal choroidal neovascularization in the macular photocoagulation study. Arch Ophthalmol. 1994;112(9):1176-1184.Google Scholar
  14. 14.
    Macular Photocoagulation Study Group. Persistent and recurrent neovascularization after laser photocoagulation for subfoveal choroidal neovascularization of age-related macular degeneration. Arch Ophthalmol. 1994;112(4):489-499.Google Scholar
  15. 15.
    Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy. Five-year results from randomized clinical trials. Arch Ophthalmol. 1991;109(8):1109-1114.Google Scholar
  16. 16.
    Mason JO 3rd, Colagross CT, Vail R. Diabetic vitrectomy: risks, prognosis, future trends. Curr Opin Ophthalmol. 2006;17(3):281-285.PubMedCrossRefGoogle Scholar
  17. 17.
    Scott IU, Edwards AR, Beck RW, et al. A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology. 2007;114(10):1860-1867.PubMedCrossRefGoogle Scholar
  18. 18.
    Ahmadieh H, Ramezani A, Shoeibi N. Intravitreal bevacizumab with or without triamcinolone for refractory diabetic macular edema; a placebo-controlled, randomized clinical trial. Graefes Arch Clin Exp Ophthalmol. 2008;246(4):483-489.PubMedCrossRefGoogle Scholar
  19. 19.
    Avery RL, Pearlman J, Pieramici DJ, et al. Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology. 2006;113(10):1695. e1-e15.PubMedCrossRefGoogle Scholar
  20. 20.
    Wu L, Martinez-Castellanos MA, Quiroz-Mercado H. Twelve-month safety of intravitreal injections of bevacizumab (Avastin(R)): results of the Pan-American Collaborative Retina Study Group (PACORES). Graefes Arch Clin Exp Ophthalmol. 2007;246(1):81-87.PubMedCrossRefGoogle Scholar
  21. 21.
    Martidis A, Tennant MT. Age-related macular degeneration. In: Yanoff M, Duker JS, eds. Ophthalmology. 2nd ed. St. Louis: Mosby; 2004:925-933.Google Scholar
  22. 22.
    Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials – TAP report. Arch Ophthalmol. 1999;117(10):1329-1345.Google Scholar
  23. 23.
    Verteporfin in Photodynamic Therapy Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in pathologic myopia with verteporfin. 1-year results of a randomized clinical trial – VIP report no. 1. Ophthalmology. 2001;108(5):841-852.CrossRefGoogle Scholar
  24. 24.
    Mennel S, Barbazetto I, Meyer CH, et al. Ocular photodynamic therapy – standard applications and new indications (part 1). Review of the literature and personal experience. Ophthalmologica. 2007;221(4):216-226.PubMedCrossRefGoogle Scholar
  25. 25.
    Mennel S, Barbazetto I, Meyer CH, et al. Ocular photodynamic therapy – standard applications and new indications. Part 2. Review of the literature and personal experience. Ophthalmologica. 2007;221(5):282-291.PubMedCrossRefGoogle Scholar
  26. 26.
    Barbazetto I, Schmidt-Erfurth U. Photodynamic therapy of choroidal hemangioma: two case reports. Graefes Arch Clin Exp Ophthalmol. 2000;238(3):214-221.PubMedCrossRefGoogle Scholar
  27. 27.
    Jurklies B, Anastassiou G, Ortmans S, et al. Photodynamic therapy using verteporfin in circumscribed choroidal haemangioma. Br J Ophthalmol. 2003;87(1):84-89.PubMedCrossRefGoogle Scholar
  28. 28.
    Bressler NM. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Arch Ophthalmol. 2001;119(2):198-207.PubMedGoogle Scholar
  29. 29.
    Shields CL, Santos MC, Diniz W, et al. Thermotherapy for retinoblastoma. Arch Ophthalmol. 1999;117(7):885-893.PubMedGoogle Scholar
  30. 30.
    Abramson DH, Schefler AC. Transpupillary thermotherapy as initial treatment for small intraocular retinoblastoma: technique and predictors of success. Ophthalmology. 2004;111(5):984-991.PubMedCrossRefGoogle Scholar
  31. 31.
    Kreusel KM, Bechrakis N, Riese J. Combined brachytherapy and transpupillary thermotherapy for large choroidal melanoma: tumor regression and early complications. Graefes Arch Clin Exp Ophthalmol. 2006;244(12):1575-1580.PubMedCrossRefGoogle Scholar
  32. 32.
    Bartlema YM, Oosterhuis JA, Journee-De Korver JG, et al. Combined plaque radiotherapy and transpupillary thermotherapy in choroidal melanoma: 5 years’ experience. Br J Ophthalmol. 2003;87(11):1370-1373.PubMedCrossRefGoogle Scholar
  33. 33.
    Shields CL, Cater J, Shields JA, et al. Combined plaque radiotherapy and transpupillary thermotherapy for choroidal melanoma: tumor control and treatment complications in 270 consecutive patients. Arch Ophthalmol. 2002;120(7):933-940.PubMedGoogle Scholar
  34. 34.
    Seregard S, Landau I. Transpupillary thermotherapy as an adjunct to ruthenium plaque radiotherapy for choroidal melanoma. Acta Ophthalmol Scand. 2001;79(1):19-22.PubMedCrossRefGoogle Scholar
  35. 35.
    Augsburger JJ, Kleineidam M, Mullen D. Combined iodine-125 plaque irradiation and indirect ophthalmoscope laser therapy of choroidal malignant melanomas: comparison with iodine-125 and cobalt-60 plaque radiotherapy alone. Graefes Arch Clin Exp Ophthalmol. 1993;231(9):500-507.PubMedCrossRefGoogle Scholar
  36. 36.
    Abramson DH, Schefler AC. Update on retinoblastoma. Retina. 2004;24(6):828-848.PubMedCrossRefGoogle Scholar
  37. 37.
    Shields CL, Mashayekhi A, Cater J, et al. Macular retinoblastoma managed with chemoreduction. Arch Ophthalmol. 2005;123:765-773.PubMedCrossRefGoogle Scholar
  38. 38.
    Rodriguez-Galindo C, Wilson MW, Haik BG, et al. Treatment of intraocular retinoblstoma with vincristine and carboplatin. J Clin Oncol. 2003;21:2019-2025.PubMedCrossRefGoogle Scholar
  39. 39.
    Schefler AC, Cicciarelli N, Feuer W, et al. Macular retinoblastoma: evaluation of tumor control, local complications, and visual outcomes for eyes treated with chemotherapy and repetitive foveal laser ablation. Ophthalmology. 2007;114(1):162-169.PubMedCrossRefGoogle Scholar
  40. 40.
    Charles S. Endophotocoagulation. Retina. 1981;1(2):117-120.PubMedCrossRefGoogle Scholar
  41. 41.
    Peyman GA, Grisolano JM, Palacio MN. Intraocular photocoagulation with the argon-krypton laser. Arch Ophthalmol. 1980;98(11):2062-2064.PubMedGoogle Scholar
  42. 42.
    Peyman GA, D’Amico DJ, Alturki WA. An endolaser probe with aspiration capability. Arch Ophthalmol. 1992;110(5):718.PubMedGoogle Scholar
  43. 43.
    Peyman GA, Lee KJ. Multifunction endolaser probe. Am J Ophthalmol. 1992;114(1):103-104.PubMedGoogle Scholar
  44. 44.
    Awh CC, Schallen EH, De Juan E Jr. An illuminating laser probe for vitreoretinal surgery. Arch Ophthalmol. 1994;112(4):553-554.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Amy C. Schefler
    • 2
  • Charles C. Wykoff
    • 3
  • Timothy G. Murray
    • 1
  1. 1.Department of Ophthalmology, Bascom Palmer Eye InstituteUniversity of Miami, Miller School of MedicineMiamiUSA
  2. 2.Department of OphthalmologyBascom Palmer Eye InstituteMiamiUSA
  3. 3.Department of Ophthalmology, Bascom Palmer Eye InstituteUniversity of Miami, Miller School of MedicineMiamiUSA

Personalised recommendations