Laser and Light for Wound Healing Stimulation



Understanding wound healing is critical for health care ­professionals mainly because of the enormous burden of chronic wounds on society. In addition, in many medical specialties, creating wounds for diagnostic and therapeutic purposes is part of a physician’s daily practice.

Acute wounds are usually closed using sutures, staples, or other methods of wound closure. Conventional modalities include maintenance of a moist wound bed, and prevention of infection. Although acute wounds are not challenging in most settings, they may influence the hospital stay or expenses related to medical procedures. Chronic wounds however, are more challenging. The incidence of chronic wounds in the United States is approximately five to seven million per year1 and the annual costs for management of these wounds is greater than $20 billion.


Wound Healing Laser Therapy Wound Closure Laser Welding Indocyanine Green 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1.  1.
    Petrie NC, Yao F, Eriksson E. Gene therapy in wound healing. Surg Clin N Am. 2003;83(3):194-199.CrossRefGoogle Scholar
  2.  2.
    Harding KG, Morris HL, Patel GK. Science, medicine and the future: healing chronic wounds. BMJ. 2002;324:160-163.PubMedCrossRefGoogle Scholar
  3.  3.
    Frykberg RG, Armstrong DG, Giurini J, et al. Diabetic foot disorders: a clinical practice guideline. American College of Foot and Ankle Surgeons. J Foot Ankle Surg. 2000;39(5 Suppl):S1-S60.PubMedGoogle Scholar
  4.  4.
    de Araujo T, Valencia I, Federman DG, et al. Managing the patient with venous ulcers. Ann Intern Med. 2003;138:326-334.PubMedGoogle Scholar
  5.  5.
    Kirsner R. Wound healing. In: Bolognia JL, Jorizzo JL, Rapini RP, et al., eds. Dermatology. Edinburgh: Mosby; 2003:2207-2215.Google Scholar
  6.  6.
    Clark RAF. Wound repair: overview and general considerations. In: Clark RAF, ed. The Molecular and Cellular Biology of Wound Repair. London: Plenum Press; 1996:3-50.Google Scholar
  7.  7.
    Clark RA, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol. 2007;127(5):1018-1029.PubMedCrossRefGoogle Scholar
  8.  8.
    Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol. 2007;127(5):998-1008.PubMedCrossRefGoogle Scholar
  9.  9.
    Mast BA, Schultz GS. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 1996;4:411-420.PubMedCrossRefGoogle Scholar
  10. 10.
    Booth BA, Polak KL, Uitto J. Collagen biosynthesis by human skin fibroblasts. Biochim Biophys Acta. 1980;607:145-160.PubMedGoogle Scholar
  11. 11.
    Lazarus GS, Cooper DM, Knighton DR, et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol. 1994;130(4):489-493.PubMedCrossRefGoogle Scholar
  12. 12.
    Steed DL. Wound-healing trajectories. Surg Clin N Am. 2003;83(3):206-208.Google Scholar
  13. 13.
    Williams JZ, Barbul A. Nutrition and wound healing. Surg Clin N Am. 2003;83(3):193-197.CrossRefGoogle Scholar
  14. 14.
    Mester E, Spiry T, Szende B, et al. Effect of laser rays on wound healing. Am J Surg. 1971;122(4):532-535.PubMedCrossRefGoogle Scholar
  15. 15.
    Bass LS, Treat MR. Laser tissue welding: a comprehensive review of current and future clinical applications. Lasers Surg Med. 1995;7:315-349.CrossRefGoogle Scholar
  16. 16.
    Kirsch AJ, Cooper CS, Gatti J, et al. Laser tissue soldering for hypospadias repair: results of a controlled prospective clinical trial. J Urol. 2001;65:574-577.CrossRefGoogle Scholar
  17. 17.
    Simhon D, Halpern M, Brosh T, et al. Immediate tight sealing of skin incisions using an innovative temperature-controlled laser soldering device: in vivo study in porcine skin. Ann Surg. 2007;245(2):206-213.PubMedCrossRefGoogle Scholar
  18. 18.
    Sigel B, Acevedo FJ. Vein anastomosis by electrocoaptive union. Surg Forum. 1962;13:291.Google Scholar
  19. 19.
    Garden JM, Robinson JK, Taute PM, et al. The low-output carbon dioxide laser for cutaneous wound closure of scalpel incisions: comparative tensile strength studies of the laser to the suture and staple for wound closure. Lasers Surg Med. 1986;6(1):67-71.PubMedCrossRefGoogle Scholar
  20. 20.
    Abergel RP, Lyons RF, White RA, et al. Skin closure by Nd:YAG laser welding. J Am Acad Dermatol. 1986;14(5):810-814.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang S, Grubbs PE Jr, Basu S, et al. Effect of blood bonding on bursting strength of laser-assisted microvascular anastomoses. Microsurgery. 1988;9(1):10-13.PubMedCrossRefGoogle Scholar
  22. 22.
    McKennan KX. “Tissue welding” with the argon laser in middle ear surgery. Laryngoscope. 1990;100(11):1143-1145.PubMedCrossRefGoogle Scholar
  23. 23.
    Talmor M, Bleustein CB, Poppas DP. Laser tissue welding: a biotechnological advance for the future. Arch Facial Plast Surg. 2001;3:207-213.PubMedCrossRefGoogle Scholar
  24. 24.
    Tang J, Godlewski G, Rouy S, et al. Morphologic changes in collagen fibers after 830 nm diode laser welding. Lasers Surg Med. 1997;21(5):438-443.PubMedCrossRefGoogle Scholar
  25. 25.
    Jain KK, Gorisch W. Repair of small blood vessels with the neodymium-YAG laser: a preliminary report. Surgery. 1979;85(6):684-688.PubMedGoogle Scholar
  26. 26.
    Simhon D, Ravid A, Halpern M, et al. Laser soldering of rat skin, using fiberoptic temperature controlled system. Lasers Surg Med. 2001;29(3):265-273.PubMedCrossRefGoogle Scholar
  27. 27.
    Capon A, Mordon S. Can thermal lasers promote skin wound healing. Am J Clin Dermatol. 2003;4(1):1-12.PubMedCrossRefGoogle Scholar
  28. 28.
    Abergel RP, Lyons R, Dwyer R, et al. Use of lasers for closure of cutaneous wounds: experience with Nd:YAG, argon and CO2 lasers. J Dermatol Surg Oncol. 1986;12:1181-1185.PubMedGoogle Scholar
  29. 29.
    Massicotte JM, Stewart RB, Poppas DP. Effects of endogenous absorption in human albumin solder for acute laser wound closure. Lasers Surg Med. 1998;23:18-24.PubMedCrossRefGoogle Scholar
  30. 30.
    Lauto A. Repair strength dependence on solder protein concentration: a study in laser tissue-welding. Lasers Surg Med. 1998;22:120-125.PubMedCrossRefGoogle Scholar
  31. 31.
    Levanon D, Katzir A, Ravid A. A scanning electron microscopy study of CO2 laser-albumin soldering in the rabbit model. Photomed Laser Surg. 2004;22(6):461-469.PubMedCrossRefGoogle Scholar
  32. 32.
    Wider TM, Libutti SK, Greenwald DP, et al. Skin closure with dye-enhanced laser welding and fibrinogen. Plast Reconstr Surg. 1991;88:1018-1025.PubMedCrossRefGoogle Scholar
  33. 33.
    Lauto A, Foster LJ, Ferris L, et al. Albumin-genipin solder for laser tissue repair. Lasers Surg Med. 2004;35(2):140-145.PubMedCrossRefGoogle Scholar
  34. 34.
    Birch JF, Mandley DJ, Williams SL, et al. Methylene blue based protein solder for vascular anastomoses: an in vitro burst pressure study. Lasers Surg Med. 2000;26(3):323-329.PubMedCrossRefGoogle Scholar
  35. 35.
    Lauto A, Kerman I, Felsen D, Poppas D. Two-layer film as a laser soldering biomaterial. Lasers Surg Med. 1999;25:250-256.PubMedCrossRefGoogle Scholar
  36. 36.
    DeCoste SD, Farinelli W, Flotte T, et al. Dye-enhanced laser welding for skin closure. Lasers Surg Med. 1992;12(1):25-32.PubMedCrossRefGoogle Scholar
  37. 37.
    Small W 4th, Heredia NJ, Maitland DJ, et al. Dye-enhanced protein solders and patches in laser-assisted tissue welding. J Clin Laser Med Surg. 1997;15(5):205-208.PubMedGoogle Scholar
  38. 38.
    Gobin AM, O’Neal DP, Watkins DM, et al. Near infrared laser-tissue welding using nanoshells as an exogenous absorber. Lasers Surg Med. 2005;37(2):123-129.PubMedCrossRefGoogle Scholar
  39. 39.
    Poppas DP, Massicotte JM, Stewart RB, et al. Human albumin solder supplemented with TGF-beta 1 accelerates healing following laser welded wound closure. Lasers Surg Med. 1996;19(3):360-368.PubMedCrossRefGoogle Scholar
  40. 40.
    Seki S. Techniques for better suturing. Br J Surg. 1988;75:1181-1184.PubMedCrossRefGoogle Scholar
  41. 41.
    Gennari R, Rotmensz N, Ballardini B, et al. A prospective, randomized, controlled clinical trial of tissue adhesive (2-octylcyanoacrylate) versus standard wound closure in breast surgery. Surgery. 2004;136(3):593-599.PubMedCrossRefGoogle Scholar
  42. 42.
    Ong CC, Jacobsen AS, Joseph VT. Comparing wound closure using tissue glue versus subcuticular suture for pediatric surgical incisions: a prospective, randomised trial. Pediatr Surg Int. 2002;18:553-555.PubMedCrossRefGoogle Scholar
  43. 43.
    Schober R, Ulrich F, Sander T, et al. Laser-induced alteration of collagen substructure allows microsurgical tissue welding. Science. 1986;232:1421-1422.PubMedCrossRefGoogle Scholar
  44. 44.
    Simhon D, Brosh T, Halpern M, et al. Closure of skin incisions in rabbits by laser soldering: I: wound healing pattern. Lasers Surg Med. 2004;35:1-11.PubMedCrossRefGoogle Scholar
  45. 45.
    Helmsworth TF, Wright CB, Scheffter SM, et al. Molecular surgery of the basement membrane by the argon laser. Lasers Surg Med. 1990;10:576-583.PubMedCrossRefGoogle Scholar
  46. 46.
    Peavy GM. Lasers and laser-tissue interaction. Vet Clin North Am Small Anim Pract. 2002;32(3):517-534.PubMedCrossRefGoogle Scholar
  47. 47.
    Gulsoy M, Dereli Z, Tabakoglu HO, et al. Closure of skin incisions by 980-nm diode laser welding. Lasers Med Sci. 2006;21:5-10.PubMedCrossRefGoogle Scholar
  48. 48.
    Mester E, Mester AF, Mester A. The biomedical effects of laser application. Lasers Surg Med. 1988;5:607-614.Google Scholar
  49. 49.
    Wheeland RG. Lasers for stimulation or inhibition of wound healing. J Dermatol Surg Oncol. 1993;19:747-752.PubMedGoogle Scholar
  50. 50.
    Kawalec JS, Hetherington VJ, Pfennigwerth TC, et al. Effect of a diode laser on wound healing by using diabetic and nondiabetic mice. J Foot Ankle Surg. 2004;43(4):214-220.PubMedCrossRefGoogle Scholar
  51. 51.
    Dixon JA. Current laser applications in general surgery. Ann Surg. 1988;207(4):355-372.PubMedCrossRefGoogle Scholar
  52. 52.
    Juri H, Obeide A, Young S. CO2 laser in decubitus ulcers. Lasers Med Surg. 1985;5:143-144.Google Scholar
  53. 53.
    Schindl A, Schindl M, Schindl L. Successful treatment of persistent radiation ulcer by low power laser therapy. J Am Acad Dermatol. 1997;37:646-648.PubMedCrossRefGoogle Scholar
  54. 54.
    Allendorf JD, Bessler M, Huang J, et al. Helium-neon laser irradiation at fluences of 1, 2, and 4 J/cm2 failed to accelerate wound healing as assessed by wound contracture rate and tensile strength. Lasers Surg Med. 1997;20:340-345.PubMedCrossRefGoogle Scholar
  55. 55.
    Basford JR. Low-energy laser therapy: controversies and new research findings. Lasers Surg Med. 1989;9:1-5.PubMedCrossRefGoogle Scholar
  56. 56.
    Bilhari I, Mester AR. The biostimulative effect of low level laser therapy of long-standing crural ulcers using helium neon laser, helium neon plus infrared lasers, and noncoherent light: preliminary report of a randomized double-blind comparative study. Laser Ther. 1989;1(Pt 2):97-98.Google Scholar
  57. 57.
    Schindl A, Heinze G, Schindl M, et al. Systemic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc Res. 2002;64(2):240-246.PubMedCrossRefGoogle Scholar
  58. 58.
    Reddy GK, Stehno-Bittel L, Enwemeka CS. Laser photostimulation accelerates wound healing in diabetic rats. Wound Repair Regen. 2001;9(3):248-255.PubMedCrossRefGoogle Scholar
  59. 59.
    Yu W, Naim JO, Lanzafame RJ. Effects of photostimulation on wound healing in diabetic mice. Lasers Surg Med. 1997;20(1):56-63.PubMedCrossRefGoogle Scholar
  60. 60.
    Abergel RP, Meeker CA, Lam TS, Dwyer RM, Lesavoy MA, Uitto J. Control of connective tissue metabolism by lasers: recent developments and future prospects. J Am Acad Dermatol. 1984;11:1142-1150.PubMedCrossRefGoogle Scholar
  61. 61.
    Pourreau-Schneider N, Ahmed A, Soudry M, et al. Helium-neon laser treatment transforms fibroblasts into myofibroblasts. Am J Pathol. 1990;137:171-178.PubMedGoogle Scholar
  62. 62.
    Boulton M, Marshall J. He-Ne laser stimulation of human fibroblast proliferation and attachment in vitro. Lasers Life Sci. 1986;1:125-134.Google Scholar
  63. 63.
    Posten W, Wrone DA, Dover JS, et al. Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg. 2005;31(3):334-340.PubMedCrossRefGoogle Scholar
  64. 64.
    Pereira AN, EduardoCde P, Matson E, Marques MM. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med. 2002;31:263-267.PubMedCrossRefGoogle Scholar
  65. 65.
    Medrado AR, Pugliese LS, Reis SR, Andrade ZA. Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med. 2003;32:239-244. 12605432.PubMedCrossRefGoogle Scholar
  66. 66.
    Schindl A, Merwald H, Schindl L, et al. Direct stimulatory effect of low-intensity 670 nm laser irradiation on human endothelial cell proliferation. Br J Dermatol. 2003;148:334-336.PubMedCrossRefGoogle Scholar
  67. 67.
    Lyons RF, Abergel RP, White RA, et al. Biostimulation of wound healing in vivo by a helium-neon laser. Ann Plast Surg. 1987;18:47-50.PubMedCrossRefGoogle Scholar
  68. 68.
    Stadler I, Lanzafame RJ, Evans R, et al. 830-nm irradiation increases the wound tensile strength in a diabetic murine model. Lasers Surg Med. 2001;28:220-226.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Navid Bouzari
    • 1
  • Mohamed L. Elsaie
    • 2
  • Keyvan Nouri
    • 3
    • 4
  1. 1.Department of DermatologyUniversity of Miami, Miller School of MedicineMiamiUSA
  2. 2.Department of Dermatology and Cutaneous SurgeryUniversity of Miami, Miller School of MedicineMiamiUSA
  3. 3.Sylvester Comprehensive Cancer CenterUniversity of Miami Hospital and ClinicsMiamiUSA
  4. 4.Department of Dermatology and Cutaneous SurgeryUniversity of Miami, Leonard M. Miller School of MedicineMiamiUSA

Personalised recommendations