Fractional Photothermolysis



Fractional Photothermolysis (FP) a novel treatment concept that utilizes focused laser beams to create a 3-dimensional pattern of microscopically small lesions within the skin. The lesions can be referred to as ‘Microthermal Treatment Zones’ (MTZs). Tissue in the MTZs is typically either thermally damaged in non-ablative FP (nFP), or physically removed (vaporized) in ablative FP (aFP). Due to the small size of the MTZs—generally in the sub-millimeter range—and the availability of surrounding unharmed tissue, such lesions can regenerate very quickly with relatively few side effects as compared to macroscopic lesions extending to similar depth. FP is widely adopted in dermatological laser surgery, where it is used primarily to treat fine and moderate rhytides, scars of various types, pigmentary disorders, and to repair photodamaged skin. Multiple treatments are generally performed to achieve the desired outcome. Despite significant progress in the field of FP in recent years, the search for optimal treatment parameters is still ongoing. A multitude of FP devices employing different wavelengths and exposure parameters have been developed and are currently used clinically. Nevertheless, there is still ample space for further developments of FP, including the discovery of novel indications, adjuvant treatment modalities to modify the wound healing response, and drug and cell delivery facilitated by aFP procedures.


Stratum Corneum Thermal Damage Wound Healing Response Skin Cool Collagen Remodel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Fractional Photothermolysis


Fractional Resurfacing




Microthermal Treatment Zone


Optical Penetration Depth


  1.  1.
    Hruza GJ, Dover JS. Laser skin resurfacing. Arch Dermatol. 1996;132(4):451-455.PubMedCrossRefGoogle Scholar
  2.  2.
    Waldorf HA, Kauvar AN, Geronemus RG. Skin resurfacing of fine to deep rhytides using a char-free carbon dioxide laser in 47 patients. Dermatol Surg. 1995;21(11):940-946.PubMedCrossRefGoogle Scholar
  3.  3.
    Williams EF III, Dahiya R. Review of nonablative laser resurfacing modalities. Facial Plast Surg Clin North Am. 2004;12(3):305-310. v.PubMedCrossRefGoogle Scholar
  4.  4.
    Bernstein LJ, Kauvar AN, Grossman MC, Geronemus RG. The short- and long-term side effects of carbon dioxide laser resurfacing. Dermatol Surg. 1997;23(7):519-525.PubMedCrossRefGoogle Scholar
  5.  5.
    Helm TN, Shatkin S Jr. Alabaster skin after CO2 laser resurfacing: evidence for suppressed melanogenesis rather than just melanocyte destruction. Cutis. 2006;77(1):15-17.PubMedGoogle Scholar
  6.  6.
    Laws RA, Finley EM, McCollough ML, Grabski WJ. Alabaster skin after carbon dioxide laser resurfacing with histologic correlation. Dermatol Surg. 1998;24(6):633-636.PubMedCrossRefGoogle Scholar
  7.  7.
    Hohenleutner S, Koellner K, Lorenz S, Landthaler M, Hohenleutner U. Results of nonablative wrinkle reduction with a 1,450-nm diode laser: difficulties in the assessment of “subtle changes”. Lasers Surg Med. 2005;37(1):14-18.PubMedCrossRefGoogle Scholar
  8.  8.
    Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34(5):426-438.PubMedCrossRefGoogle Scholar
  9.  9.
    Laubach HJ, Manstein D. Fractional photothermolysis. Hautarzt. 2007;58(3):216-218; 220–223.PubMedCrossRefGoogle Scholar
  10. 10.
    Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220(4596):524-527.PubMedCrossRefGoogle Scholar
  11. 11.
    Grossman AR, Majidian AM, Grossman PH. Thermal injuries as a result of CO2 laser resurfacing. Plast Reconstr Surg. 1998; 102(4):1247-1252.PubMedCrossRefGoogle Scholar
  12. 12.
    Hantash BM, Bedi VP, Chan KF, Zachary CB. Ex vivo histological characterization of a novel ablative fractional resurfacing device. Lasers Surg Med. 2007;39(2):87-95.PubMedCrossRefGoogle Scholar
  13. 13.
    Walsh JT Jr, Deutsch TF. Pulsed CO2 laser tissue ablation: measurement of the ablation rate. Lasers Surg Med. 1988;8(3):264-275.PubMedCrossRefGoogle Scholar
  14. 14.
    Hale GM, Querry MR. Optical constants of water in the 200-nm to 200-microm wavelength region. Appl Opt. 1973;12(3):555-563.PubMedCrossRefGoogle Scholar
  15. 15.
    Warner DW, Morgan NE, Eby TA, Myers MC, Taylor DA. Water measurement in biological tissue. In: Romig AD, Chambers WF, eds. Microbeam Analysis, 21. San Francisco: San Francisco Press; 1987:238-240.Google Scholar
  16. 16.
    Walsh JT Jr, Cummings JP. Effect of the dynamic optical properties of water on midinfrared laser ablation. Lasers Surg Med. 1994;15(3):295-305.PubMedCrossRefGoogle Scholar
  17. 17.
    Manstein D, Zurakowski D, Thongsima S, Laubach H, Chan HH. The effects of multiple passes on the epidermal thermal damage pattern in nonablative fractional resurfacing. Lasers Surg Med. 2009;41(2):149-153.PubMedCrossRefGoogle Scholar
  18. 18.
    Laubach H, Chan HH, Rius F, Anderson RR, Manstein D. Effects of skin temperature on lesion size in fractional photothermolysis. Lasers Surg Med. 2007;39(1):14-18.PubMedCrossRefGoogle Scholar
  19. 19.
    Kositratna G, Manstein D. Skin freezing during ablative fractional resurfacing: in-vitro effects on thermal lesion size. Lasers Surg Med 2009; Suppl.(21).Google Scholar
  20. 20.
    Brightman L, Goldman MP, Taub AF. Sublative rejuvenation: experience with a new fractional radiofrequency system for skin rejuvenation and repair. J Drugs Dermatol. 2009;8(11 Suppl):s9-s13.PubMedGoogle Scholar
  21. 21.
    Hantash BM, Ubeid AA, Chang H, Kafi R, Renton B. Bipolar fractional radiofrequency treatment induces neoelastogenesis and neocollagenesis. Lasers Surg Med. 2009;41(1):1-9.PubMedCrossRefGoogle Scholar
  22. 22.
    Laubach HJ, Makin IR, Barthe PG, Slayton MH, Manstein D. Intense focused ultrasound: evaluation of a new treatment modality for precise microcoagulation within the skin. Dermatol Surg. 2008;34(5):727-734.PubMedCrossRefGoogle Scholar
  23. 23.
    Gliklich RE, White WM, Slayton MH, Barthe PG, Makin IR. Clinical pilot study of intense ultrasound therapy to deep dermal facial skin and subcutaneous tissues. Arch Facial Plast Surg. 2007;9(2):88-95.PubMedCrossRefGoogle Scholar
  24. 24.
    Bedi VP, Chan KF, Sink RK, et al. The effects of pulse energy variations on the dimensions of microscopic thermal treatment zones in nonablative fractional resurfacing. Lasers Surg Med. 2007;39(2):145-155.PubMedCrossRefGoogle Scholar
  25. 25.
    Thongsima S, Zurakowski D, Manstein D. Histological comparison of two different fractional photothermolysis devices operating at 1,550 nm. Lasers Surg Med. 2010;42(1):32-37.PubMedCrossRefGoogle Scholar
  26. 26.
    Laubach HJ, Tannous Z, Anderson RR, Manstein D. Skin responses to fractional photothermolysis. Lasers Surg Med. 2006;38(2):142-149.PubMedCrossRefGoogle Scholar
  27. 27.
    Hantash BM, Bedi VP, Sudireddy V, Struck SK, Herron GS, Chan KF. Laser-induced transepidermal elimination of dermal content by fractional photothermolysis. J Biomed Opt. 2006;11(4):041115.PubMedCrossRefGoogle Scholar
  28. 28.
    Alster TS, Tanzi EL, Lazarus M. The use of fractional laser photothermolysis for the treatment of atrophic scars. Dermatol Surg. 2007;33(3):295-299.PubMedCrossRefGoogle Scholar
  29. 29.
    Kono T, Chan HH, Groff WF, et al. Prospective direct comparison study of fractional resurfacing using different fluences and densities for skin rejuvenation in Asians. Lasers Surg Med. 2007;39(4):311-314.PubMedCrossRefGoogle Scholar
  30. 30.
    Fisher GH, Kim KH, Bernstein LJ, Geronemus RG. Concurrent use of a handheld forced cold air device minimizes patient discomfort during fractional photothermolysis. Dermatol Surg. 2005;31(9 Pt 2):1242-1243; discussion 1244.PubMedGoogle Scholar
  31. 31.
    Chan HH, Manstein D, Yu CS, Shek S, Kono T, Wei WI. The prevalence and risk factors of post-inflammatory hyperpigmentation after fractional resurfacing in Asians. Lasers Surg Med. 2007;39(5):381-385.PubMedCrossRefGoogle Scholar
  32. 32.
    Lin JY, Chan HH. Pigmentary disorders in Asian skin: treatment with laser and intense pulsed light sources. Skin Therapy Lett. 2006;11(8):8-11.PubMedGoogle Scholar
  33. 33.
    Bak H, Kim BJ, Lee WJ, et al. Treatment of striae distensae with fractional photothermolysis. Dermatol Surg. 2009;35(8):1215-1220.PubMedCrossRefGoogle Scholar
  34. 34.
    Tierney EP, Kouba DJ, Hanke CW. Review of fractional photothermolysis: treatment indications and efficacy. Dermatol Surg. 2009;35(10):1445-1461.PubMedCrossRefGoogle Scholar
  35. 35.
    Cohen SR, Henssler C, Johnston J. Fractional photothermolysis for skin rejuvenation. Plast Reconstr Surg. 2009;124(1):281-290.PubMedCrossRefGoogle Scholar
  36. 36.
    Haedersdal M, Moreau KE, Beyer DM, Nymann P, Alsbjorn B. Fractional nonablative 1540 nm laser resurfacing for thermal burn scars: a randomized controlled trial. Lasers Surg Med. 2009; 41(3):189-195.PubMedCrossRefGoogle Scholar
  37. 37.
    Laubach HJ, Anderson RR, Luger T, Manstein D. Fractional photothermolysis for involuted infantile hemangioma. Arch Dermatol. 2009;145(7):748-750.PubMedCrossRefGoogle Scholar
  38. 38.
    Karsai S, Raulin C. Fractional photothermolysis: a new option for treating melasma? Hautarzt. 2008;59(2):92-100.PubMedCrossRefGoogle Scholar
  39. 39.
    Izikson L, Anderson RR. Resolution of blue minocycline pigmentation of the face after fractional photothermolysis. Lasers Surg Med. 2008;40(6):399-401.PubMedCrossRefGoogle Scholar
  40. 40.
    Karsai S, Hammes S, Rutten A, Raulin C. Fractional photothermolysis for the treatment of granuloma annulare: a case report. Lasers Surg Med. 2008;40(5):319-322.PubMedCrossRefGoogle Scholar
  41. 41.
    Katz TM, Goldberg LH, Friedman PM. Nonablative fractional photothermolysis for the treatment of striae rubra. Dermatol Surg. 2009;35(9):1430-1433.PubMedCrossRefGoogle Scholar
  42. 42.
    Kouba DJ, Fincher EF, Moy RL. Nevus of Ota successfully treated by fractional photothermolysis using a fractionated 1440-nm Nd:YAG laser. Arch Dermatol. 2008;144(2):156-158.PubMedCrossRefGoogle Scholar
  43. 43.
    Yoo KH, Kim MN, Kim BJ, Kim CW. Treatment of alopecia areata with fractional photothermolysis laser. Int J Dermatol. 2010; 49(7):845-847.PubMedGoogle Scholar
  44. 44.
    Behroozan DS, Goldberg LH, Glaich AS, Dai T, Friedman PM. Fractional photothermolysis for treatment of poikiloderma of civatte. Dermatol Surg. 2006;32(2):298-301.PubMedCrossRefGoogle Scholar
  45. 45.
    Khatri KA, Ross V, Grevelink JM, Magro CM, Anderson RR. Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides. Arch Dermatol. 1999;135(4):391-397.PubMedCrossRefGoogle Scholar
  46. 46.
    Walsh JT Jr, Flotte TJ, Anderson RR, Deutsch TF. Pulsed CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage. Lasers Surg Med. 1988;8(2):108-118.PubMedCrossRefGoogle Scholar
  47. 47.
    Fitzpatrick RE, Ruiz-Esparza J, Goldman MP. The depth of thermal necrosis using the CO2 laser: a comparison of the superpulsed mode and conventional mode. J Dermatol Surg Oncol. 1991;17(4):340-344.PubMedGoogle Scholar
  48. 48.
    Fitzpatrick RE, Goldman MP, Satur NM, Tope WD. Pulsed carbon dioxide laser resurfacing of photo-aged facial skin. Arch Dermatol. 1996;132(4):395-402.PubMedCrossRefGoogle Scholar
  49. 49.
    Wanner M, Farinelli W, Manstein D. Ablative fractional resurfacing – evaluation of different exposure parameters in a pig model. Lasers Surg Med. 2008;20(Suppl):28.Google Scholar
  50. 50.
    Hantash BM, Bedi VP, Kapadia B, et al. In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med. 2007;39(2):96-107.PubMedCrossRefGoogle Scholar
  51. 51.
    Hunzeker CM, Weiss ET, Geronemus RG. Fractionated CO2 laser resurfacing: our experience with more than 2000 treatments. Aesthet Surg J. 2009;29(4):317-322.PubMedCrossRefGoogle Scholar
  52. 52.
    Chapas AM, Brightman L, Sukal S, et al. Successful treatment of acneiform scarring with CO2 ablative fractional resurfacing. Lasers Surg Med. 2008;40(6):381-386.PubMedCrossRefGoogle Scholar
  53. 53.
    Waibel J, Beer K. Ablative fractional laser resurfacing for the treatment of a third-degree burn. J Drugs Dermatol. 2009;8(3):294-297.PubMedGoogle Scholar
  54. 54.
    Rahman Z, MacFalls H, Jiang K, et al. Fractional deep dermal ablation induces tissue tightening. Lasers Surg Med. 2009;41(2):78-86.PubMedCrossRefGoogle Scholar
  55. 55.
    Dierickx CC, Khatri KA, Tannous ZS, et al. Micro-fractional ablative skin resurfacing with two novel erbium laser systems. Lasers Surg Med. 2008;40(2):113-123.PubMedCrossRefGoogle Scholar
  56. 56.
    Avram MM, Tope WD, Yu T, Szachowicz E, Nelson JS. Hypertrophic scarring of the neck following ablative fractional carbon dioxide laser resurfacing. Lasers Surg Med. 2009;41(3):185-188.PubMedCrossRefGoogle Scholar
  57. 57.
    Haedersdal M, Sakamoto FH, Farinelli WA, Doukas AG, Tam J, Anderson RR. Fractional CO(2) laser-assisted drug delivery. Lasers Surg Med. 2010;42(2):113-122.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Massachusetts General Hospital, Wellman Center for PhotomedicineHarvard Medical SchoolBostonUSA

Personalised recommendations