Laser-Tissue Interactions

  • E. Victor Ross
  • Nathan Uebelhoer


1.Light represents one portion of a broader electromagnetic spectrum.

2.Light-tissue interactions involve the complex topics of tissue optics, absorption, heat generation, and heat diffusion

3.Lasers are a special type of light with the characteristics of monochromaticity, directionality, and coherence.

4.Coagulation/denaturation is time and temperature dependent

5.Proper selection of light parameters is based on the color, size, and geometry of the target

6.Wound healing is the final but not least important part of the laser tissue sequence (the epilogue)

7.Laser-tissue interactions are fluid – the operator should closely examine the skin surface during all aspects of the procedure

8.Pulse duration and light doses are often as important as wavelength in predicting tissue responses to laser to irradiation


Skin Surface Intense Pulse Light Thermal Relaxation Time Pigment Lesion Actinic Cheilitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jacques SL. Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surg Clin North Am. 1992;72:531-558.PubMedGoogle Scholar
  2. 2.
    Ross E, Anderson R. Laser tissue interactions. In: Goldman M, ed. Cutaneous and Cosmetic Laser Surgery. Philadelphia: Elsevier; 2006.Google Scholar
  3. 3.
    Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. 1981;77:13-19.PubMedCrossRefGoogle Scholar
  4. 4.
    Grossweiner L. The Science of Phototherapy. Boca Raton: CRC Press; 1994.Google Scholar
  5. 5.
    Wan S, Anderson RR, Parrish JA. Analytical modeling for the optical properties of the skin with in vitro and in vivo applications. Photochem Photobiol. 1981;34:493-499.PubMedGoogle Scholar
  6. 6.
    van Gemert MJ, Jacques SL, Sterenborg HJ, et al. Skin optics. IEEE Trans Biomed Eng. 1989;36:1146-1154.PubMedCrossRefGoogle Scholar
  7. 7.
    Jacques S. Skin optics summary. Accessed September 2007.
  8. 8.
    Jacques SL, Prahl SA. Modeling optical and thermal distributions in tissue during laser irradiation. Lasers Surg Med. 1987;6:494-503.PubMedCrossRefGoogle Scholar
  9. 9.
    Hillenkamp F. Interaction between laser radiation and biological systems. In: Hillenkamp FRP, Sacchi C, eds. Lasers in Medicine and Biology, Series A. New York: Plenum; 1980:37-68.Google Scholar
  10. 10.
    Anderson R, Ross E. Laser-tissue interactions. In: Fitzpatrick R, Goldman M, eds. Cosmetic Laser Surgery. St. Louis: Mosby; 2000:1-30.Google Scholar
  11. 11.
    Katzir A. Lasers and Optical Fibers in Medicine. San Diego: Academic; 1993.Google Scholar
  12. 12.
    Ross EV. Laser versus intense pulsed light: competing technologies in dermatology. Lasers Surg Med. 2006;38:261-272.PubMedCrossRefGoogle Scholar
  13. 13.
    Anderson R. Laser tissue interactions. In: Goldman M, Fitzparick R, eds. Cutaneous Laser Surgery-The Art and Science of Selective Photothermolysis. St. Louis: Mosby; 1994:3-5.Google Scholar
  14. 14.
    Reinisch L. Laser physics and tissue interactions. Otolaryngol Clin North Am. 1996;29:893-914.PubMedGoogle Scholar
  15. 15.
    Ross EV, Smirnov M, Pankratov M, et al. Intense pulsed light and laser treatment of facial telangiectasias and dyspigmentation: some theoretical and practical comparisons. Dermatol Surg. 2005;31:1188-1198.PubMedCrossRefGoogle Scholar
  16. 16.
    Boulnois J. Photophysical processes in recent medical laser developments - a review. Lasers Med Sci. 1986;1:47-66.CrossRefGoogle Scholar
  17. 17.
    Welch AJ, van Gemert MJ. Overview of optical and thermal interaction and nomenclature. In: Welch AJ, van Gemert MJ, eds. Optical Thermal Response of Laser-Irradiated Tissue. New York: Plenum; 1995:1-14.Google Scholar
  18. 18.
    Knappe V, Frank F, Rohde E. Principles of lasers and biophotonic effects. Photomed Laser Surg. 2004;22:411-417.PubMedCrossRefGoogle Scholar
  19. 19.
    Fisher JC. Basic biophysical principles of resurfacing of human skin by means of the carbon dioxide laser. J Clin Laser Med Surg. 1996;14:193-210.PubMedGoogle Scholar
  20. 20.
    Tanghetti E, Sierra RA, Sherr EA, et al. Evaluation of pulse-duration on purpuric threshold using extended pulse pulsed dye laser (cynosure V-star). Lasers Surg Med. 2002;31:363-366.PubMedCrossRefGoogle Scholar
  21. 21.
    Reinisch L, Ossoff RH. Laser applications in otolaryngology. Otolaryngol Clin North Am. 1996;29:891-892.PubMedGoogle Scholar
  22. 22.
    Shafirstein G, Baumler W, Lapidoth M, et al. A new mathematical approach to the diffusion approximation theory for selective photothermolysis modeling and its implication in laser treatment of port-wine stains. Lasers Surg Med. 2004;34:335-347.PubMedCrossRefGoogle Scholar
  23. 23.
    Raulin C, Greve B, Warncke SH, et al. Excimer laser. Treatment of iatrogenic hypopigmentation following skin resurfacing. Hautarzt. 2004;55:746-748.PubMedCrossRefGoogle Scholar
  24. 24.
    Alexiades-Armenakas MR, Bernstein LJ, Friedman PM, et al. The safety and efficacy of the 308-nm excimer laser for pigment correction of hypopigmented scars and striae alba. Arch Dermatol. 2004;140:955-960.PubMedCrossRefGoogle Scholar
  25. 25.
    Gold MH, Goldman MP. 5-aminolevulinic acid photodynamic therapy: where we have been and where we are going. Dermatol Surg. 2004;30:1077-1083.PubMedCrossRefGoogle Scholar
  26. 26.
    Itkin A, Gilchrest BA. delta-Aminolevulinic acid and blue light photodynamic therapy for treatment of multiple basal cell carcinomas in two patients with nevoid basal cell carcinoma syndrome. Dermatol Surg. 2004;30:1054-1061.PubMedCrossRefGoogle Scholar
  27. 27.
    Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524-527.PubMedCrossRefGoogle Scholar
  28. 28.
    Anderson RR, Parrish JA. Lasers in dermatology provide a model for exploring new applications in surgical oncology. Int Adv Surg Oncol. 1982;5:341-358.PubMedGoogle Scholar
  29. 29.
    Anderson RR, Parrish JA. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med. 1981;1:263-276.PubMedCrossRefGoogle Scholar
  30. 30.
    Black JF, Barton JK. Chemical and structural changes in blood undergoing laser photocoagulation. Photochem Photobiol. 2004;80:89-97.PubMedCrossRefGoogle Scholar
  31. 31.
    Kono T, Manstein D, Chan HH, et al. Q-switched ruby versus long-pulsed dye laser delivered with compression for treatment of facial lentigines in Asians. Lasers Surg Med. 2006;38:94-97.PubMedCrossRefGoogle Scholar
  32. 32.
    Avram DK, Goldman MP. Effectiveness and safety of ALA-IPL in treating actinic keratoses and photodamage. J Drugs Dermatol. 2004;3(Suppl 1):S36-S39.PubMedGoogle Scholar
  33. 33.
    Gold MH, Bradshaw VL, Boring MM, et al. The use of a novel intense pulsed light and heat source and ALA-PDT in the treatment of moderate to severe inflammatory acne vulgaris. J Drugs Dermatol. 2004;3(Suppl 6):S15-S19.PubMedGoogle Scholar
  34. 34.
    Trafeli JP, Kwan JM, Meehan KJ, et al. Use of a long-pulse alexandrite laser in the treatment of superficial pigmented lesions. Dermatol Surg. 2007;33:1477-1482.PubMedGoogle Scholar
  35. 35.
    McDaniel DH, Ash K, Lord J, et al. Laser therapy of spider leg veins: clinical evaluation of a new long pulsed alexandrite laser. Dermatol Surg. 1999;25:52-58.PubMedCrossRefGoogle Scholar
  36. 36.
    Dover JS. New approaches to the laser treatment of vascular lesions. Australas J Dermatol. 2000;41:14-18.PubMedCrossRefGoogle Scholar
  37. 37.
    Kauvar AN, Lou WW. Pulsed alexandrite laser for the treatment of leg telangiectasia and reticular veins. Arch Dermatol. 2000;136:1371-1375.PubMedCrossRefGoogle Scholar
  38. 38.
    Eremia S, Li C, Umar SH. A side-by-side comparative study of 1064 nm Nd:YAG, 810 nm diode and 755 nm alexandrite lasers for treatment of 0.3-3 mm leg veins. Dermatol Surg. 2002;28:224-230.PubMedCrossRefGoogle Scholar
  39. 39.
    Passeron T, Olivier V, Duteil L, et al. The new 940-nanometer diode laser: an effective treatment for leg venulectasia. J Am Acad Dermatol. 2003;48:768-774.PubMedCrossRefGoogle Scholar
  40. 40.
    Paithankar DY, Clifford JM, Saleh BA, et al. Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling. J Biomed Opt. 2003;8:545-551.PubMedCrossRefGoogle Scholar
  41. 41.
    Zelickson B, Ross V, Kist D, et al. Ultrastructural effects of an infrared handpiece on forehead and abdominal skin. Dermatol Surg. 2006;32:897-901.PubMedCrossRefGoogle Scholar
  42. 42.
    Majaron B, Verkruysse W, Kelly KM, et al. Er:YAG laser skin resurfacing using repetitive long-pulse exposure and cryogen spray cooling: II. Theoretical analysis. Lasers Surg Med. 2001;28:131-138.PubMedCrossRefGoogle Scholar
  43. 43.
    Majaron B, Kelly KM, Park HB, et al. Er:YAG laser skin resurfacing using repetitive long-pulse exposure and cryogen spray cooling: I. Histological study. Lasers Surg Med. 2001;28:121-131.PubMedCrossRefGoogle Scholar
  44. 44.
    Ross EV, Yashar SS, Naseef GS, et al. A pilot study of in vivo immediate tissue contraction with CO2 skin laser resurfacing in a live farm pig. Dermatol Surg. 1999;25:851-856.PubMedCrossRefGoogle Scholar
  45. 45.
    Ross EV, Grossman MC, Duke D, et al. Long-term results after CO2 laser skin resurfacing: a comparison of scanned and pulsed systems. J Am Acad Dermatol. 1997;37:709-718.PubMedCrossRefGoogle Scholar
  46. 46.
    Carniol PJ, Maas CS. Bipolar radiofrequency resurfacing. Facial Plast Surg Clin North Am. 2001;9:337-342.PubMedGoogle Scholar
  47. 47.
    Ruiz-Esparza J, Gomez JB. The medical face lift: a noninvasive, nonsurgical approach to tissue tightening in facial skin using nonablative radiofrequency. Dermatol Surg. 2003;29:325-332. discussion 32.PubMedCrossRefGoogle Scholar
  48. 48.
    Sadick NS. Update on non-ablative light therapy for rejuvenation: a review. Lasers Surg Med. 2003;32:120-128.PubMedCrossRefGoogle Scholar
  49. 49.
    Koch RJ. Radiofrequency nonablative tissue tightening. Facial Plast Surg Clin North Am. 2004;12:339-346.PubMedCrossRefGoogle Scholar
  50. 50.
    Sadick NS, Makino Y. Selective electro-thermolysis in aesthetic medicine: a review. Lasers Surg Med. 2004;34:91-97.PubMedCrossRefGoogle Scholar
  51. 51.
    Zelickson BD, Kist D, Bernstein E, et al. Histological and ultrastructural evaluation of the effects of a radiofrequency-based nonablative dermal remodeling device: a pilot study. Arch Dermatol. 2004;140:204-209.PubMedCrossRefGoogle Scholar
  52. 52.
    Sadick NS, Laughlin SA. Effective epilation of white and blond hair using combined radiofrequency and optical energy. J Cosmet Laser Ther. 2004;6:27-31.PubMedCrossRefGoogle Scholar
  53. 53.
    Sadick NS, Alexiades-Armenakas M, Bitter P Jr, et al. Enhanced full-face skin rejuvenation using synchronous intense pulsed optical and conducted bipolar radiofrequency energy (ELOS): introducing selective radiophotothermolysis. J Drugs Dermatol. 2005;4:181-186.PubMedGoogle Scholar
  54. 54.
    Hammes S, Greve B, Raulin C. Electro-optical synergy (ELOStrade mark) technology for nonablative skin rejuvenation: a preliminary prospective study. J Eur Acad Dermatol Venereol. 2006;20:1070-1075.PubMedCrossRefGoogle Scholar
  55. 55.
    Pearce J, Thomsen SL. Rate process analysis of theraml damage. In: Welch AJ, van Gemert MJ, eds. Optical Thermal Response of Laser-Irradiated Tissue. New York: Plenum; 1995:561-608.Google Scholar
  56. 56.
    Welch AJ, Yoon G, van Gemert MJ. Practical models for light distribution in laser-irradiated tissue. Lasers Surg Med. 1987;6:488-493.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang L, Jacques S, Zheng L. MCML - Monte Carlo modeling of photon transport in multi-layered tissues. Comput Meth Programs Biomed. 1995;47:131.CrossRefGoogle Scholar
  58. 58.
    Jacques S. Simple optical theory for light dosimetry during PDT. In: Tuchin V, ed. Selected Papers on Tissue Optics, MS 102. Bellingham: SPIE - International Society for Optical Engineering; 1992:655.Google Scholar
  59. 59.
    Stamatas GN, Kollias N. Blood stasis contributions to the perception of skin pigmentation. J Biomed Opt. 2004;9:315-322.PubMedCrossRefGoogle Scholar
  60. 60.
    Niemz M. Laser-Tissue Interactions. 2nd ed. Berlin: Springer; 2002.Google Scholar
  61. 61.
    Anderson RR, Farinelli W, Laubach H, et al. Selective photothermolysis of lipid-rich tissues: a free electron laser study. Lasers Surg Med. 2006;38:913-919.PubMedCrossRefGoogle Scholar
  62. 62.
    Ellis DL, Weisberg NK, Chen JS, et al. Free electron laser infrared wavelength specificity for cutaneous contraction. Lasers Surg Med. 1999;25:1-7.PubMedCrossRefGoogle Scholar
  63. 63.
    Goldman L, Rockwell RJ. Laser action at the cellular level. JAMA. 1966;198:641-644.PubMedCrossRefGoogle Scholar
  64. 64.
    Anderson RR. Laser medicine in dermatology. J Dermatol. 1996;23:778-782.PubMedGoogle Scholar
  65. 65.
    Altshuler GB, Anderson RR, Manstein D, et al. Extended theory of selective photothermolysis. Lasers Surg Med. 2001;29:416-432.PubMedCrossRefGoogle Scholar
  66. 66.
    Anderson RR, Margolis RJ, Watenabe S, et al. Selective photothermolysis of cutaneous pigmentation by Q-switched Nd: YAG laser pulses at 1064, 532, and 355 nm. J Invest Dermatol. 1989;93:28-32.PubMedCrossRefGoogle Scholar
  67. 67.
    Parrish JA, Anderson RR, Harrist T, et al. Selective thermal effects with pulsed irradiation from lasers: from organ to organelle. J Invest Dermatol. 1983;80(Suppl):75s-80s.CrossRefGoogle Scholar
  68. 68.
    Anderson RR, Jaenicke KF, Parrish JA. Mechanisms of selective vascular changes caused by dye lasers. Lasers Surg Med. 1983;3:211-215.PubMedCrossRefGoogle Scholar
  69. 69.
    Itzkan I, Izatt J. Medical use of lasers. In: Encyclopedia of Applied Physics. Washington, DC: VCH Publishers, Inc. & American Institute of Physics; 1994:33-59.Google Scholar
  70. 70.
    Black JF, Wade N, Barton JK. Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1, 064 nm. Lasers Surg Med. 2005;36:155-165.PubMedCrossRefGoogle Scholar
  71. 71.
    Polla BS, Anderson RR. Thermal injury by laser pulses: protection by heat shock despite failure to induce heat-shock response. Lasers Surg Med. 1987;7:398-404.PubMedCrossRefGoogle Scholar
  72. 72.
    Beckham JT, Mackanos MA, Crooke C, et al. Assessment of cellular response to thermal laser injury through bioluminescence imaging of heat shock protein 70. Photochem Photobiol. 2004;79:76-85.PubMedGoogle Scholar
  73. 73.
    Kollias N, Gillies R, Moran M, et al. Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging. J Invest Dermatol. 1998;111:776-780.PubMedCrossRefGoogle Scholar
  74. 74.
    Alexiades-Armenakas MR, Geronemus RG. Laser-mediated photodynamic therapy of actinic cheilitis. J Drugs Dermatol. 2004;3:548-551.PubMedGoogle Scholar
  75. 75.
    Karrer S, Baumler W, Abels C, et al. Long-pulse dye laser for photodynamic therapy: investigations in vitro and in vivo. Lasers Surg Med. 1999;25:51-59.PubMedCrossRefGoogle Scholar
  76. 76.
    Seguchi K, Kawauchi S, Morimoto Y, et al. Critical parameters in the cytotoxicity of photodynamic therapy using a pulsed laser. Lasers Med Sci. 2002;17:265-271.PubMedCrossRefGoogle Scholar
  77. 77.
    Sterenborg HJ, van Gemert MJ. Photodynamic therapy with pulsed light sources: a theoretical analysis. Phys Med Biol. 1996;41:835-849.PubMedCrossRefGoogle Scholar
  78. 78.
    Smith TK, Choi B, Ramirez-San-Juan JC, et al. Microvascular blood flow dynamics associated with photodynamic therapy, pulsed dye laser irradiation and combined regimens. Lasers Surg Med. 2006;38:532-539.PubMedCrossRefGoogle Scholar
  79. 79.
    Parrish JA, Jaenicke KF. Action spectrum for phototherapy of psoriasis. J Investig Dermatol. 1981;76:359-362.PubMedCrossRefGoogle Scholar
  80. 80.
    Weiss RA, McDaniel DH, Geronemus RG, et al. Clinical trial of a novel non-thermal LED array for reversal of photoaging: clinical, histologic, and surface profilometric results. Lasers Surg Med. 2005;36:85-91.PubMedCrossRefGoogle Scholar
  81.  81.
    Hohenleutner U, Walther T, Wenig M, et al. Leg telangiectasia treatment with a 1.5 ms pulsed dye laser, ice cube cooling of the skin and 595 vs 600 nm: preliminary results. Lasers Surg Med. 1998;23:72-78.PubMedCrossRefGoogle Scholar
  82.  82.
    Greve B, Hammes S, Raulin C. The effect of cold air cooling on 585 nm pulsed dye laser treatment of port-wine stains. Dermatol Surg. 2001;27:633-636.PubMedCrossRefGoogle Scholar
  83.  83.
    Chan HH, Lam LK, Wong DS, et al. Role of skin cooling in improving patient tolerability of Q-switched Alexandrite (QS Alex) laser in nevus of Ota treatment. Lasers Surg Med. 2003;32:148-151.PubMedCrossRefGoogle Scholar
  84.  84.
    Raulin C, Greve B, Hammes S. Cold air in laser therapy: first experiences with a new cooling system. Lasers Surg Med. 2000;27:404-410.PubMedCrossRefGoogle Scholar
  85.  85.
    Huang PS, Chang CJ. Cryogen spray cooling in conjunction with pulse dye laser treatment of port wine stains of the head and neck. Chang Gung Med J. 2001;24:469-475.PubMedGoogle Scholar
  86.  86.
    Weiss RA, Sadick NS. Epidermal cooling crystal collar device for improved results and reduced side effects on leg telangiectasias using intense pulsed light. Dermatol Surg. 1015;26:1015-1018.CrossRefGoogle Scholar
  87.  87.
    Tunnell JW, Nelson JS, Torres JH, et al. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study. Lasers Surg Med. 2000;27:373-383.PubMedCrossRefGoogle Scholar
  88.  88.
    Kelly KM, Nelson JS, Lask GP, et al. Cryogen spray cooling in combination with nonablative laser treatment of facial rhytides. Arch Dermatol. 1999;135:691-694.PubMedCrossRefGoogle Scholar
  89.  89.
    Weiss RA, Sadick NS. Epidermal cooling crystal collar device for improved results and reduced side effects on leg telangiectasias using intense pulsed light. Dermatol Surg. 2000;26:1015-1018.PubMedCrossRefGoogle Scholar
  90.  90.
    Zenzie HH, Altshuler GB, Smirnov MZ, et al. Evaluation of cooling methods for laser dermatology. Lasers Surg Med. 2000;26:130-144.PubMedCrossRefGoogle Scholar
  91.  91.
    Almoallim H, Klinkhoff AV, Arthur AB, et al. Laser induced chrysiasis: disfiguring hyperpigmentation following Q-switched laser therapy in a woman previously treated with gold. J Rheumatol. 2006;33:620-621.PubMedGoogle Scholar
  92.  92.
    Trotter MJ, Tron VA, Hollingdale J, et al. Localized chrysiasis induced by laser therapy. Arch Dermatol. 1995;131:1411-1414.PubMedCrossRefGoogle Scholar
  93.  93.
    Franco W, Childers M, Nelson JS, et al. Laser surgery of port wine stains using local vacuum [corrected] pressure: changes in calculated energy deposition (Part II). Lasers Surg Med. 2007;39:118-127.PubMedCrossRefGoogle Scholar
  94.  94.
    Childers MA, Franco W, Nelson JS, et al. Laser surgery of port wine stains using local vacuum pressure: changes in skin morphology and optical properties (Part I). Lasers Surg Med. 2007;39:108-117.PubMedCrossRefGoogle Scholar
  95.  95.
    Manstein D, Herron GS, Sink RK, et al. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34:426-438.PubMedCrossRefGoogle Scholar
  96.  96.
    Dierickx CC. Hair removal by lasers and intense pulsed light sources. Semin Cutan Med Surg. 2000;19:267-275.PubMedCrossRefGoogle Scholar
  97.  97.
    Jasim ZF, Handley JM. Treatment of pulsed dye laser-resistant port wine stain birthmarks. J Am Acad Dermatol. 2007;57:677-682.PubMedCrossRefGoogle Scholar
  98.  98.
    Choi B, Tsu L, Chen E, et al. Determination of chemical agent optical clearing potential using in vitro human skin. Lasers Surg Med. 2005;36:72-75.PubMedCrossRefGoogle Scholar
  99.  99.
    Lapotko D, Shnip A, Lukianova E. Photothermal responses of individual cells. J Biomed Opt. 2005;10:14006.PubMedCrossRefGoogle Scholar
  100. 100.
    Anderson RR. Polarized light examination and photography of the skin. Arch Dermatol. 1991;127:1000-1005.PubMedCrossRefGoogle Scholar
  101. 101.
    Pitsillides CM, Joe EK, Wei X, et al. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J. 2003;84:4023-4032.PubMedCrossRefGoogle Scholar
  102. 102.
    Reinisch L. Scatter-limited phototherapy: a model for laser treatment of skin. Lasers Surg Med. 2002;30:381-388.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Laser and Cosmetic DermatologyScripps ClinicSan DiegoUSA
  2. 2.Naval Medical Center San DiegoSan DiegoUSA

Personalised recommendations