SOFC Modeling

  • Jarosław Milewski
Part of the Green Energy and Technology book series (GREEN)


SOFC performance modeling is impacted by the multi-physic processes taking place on the fuel cell surfaces. Heat transfer together with electrochemical reactions, mass and charge transport are conducted inside the cell. There are many mathematical models of the SOFC [1], based mainly on mathematical descriptions of these physical, chemical, and electrochemical properties. There are several parameters affecting cell working conditions, e.g. electrolyte material, electrolyte thickness, cell temperature, inlet and outlet gas compositions at anode and cathode, anode and cathode porosities etc.


Fuel Cell Heat Exchanger Combustion Chamber Solid Oxide Fuel Cell Turbine Inlet Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kakac S, Pramuanjaroenkij A, Zhou XY (2007) A review of numerical modeling of solid oxide fuel cells. Int J Hydrogen Energy 32(7):761–786CrossRefGoogle Scholar
  2. 2.
    Virkar A (2005) Theoretical analysis of the role of interfaces in transport through oxygen ion and electron conducting membranes. J Power Sources 147(1–2):8–31CrossRefGoogle Scholar
  3. 3.
    Milewski J, Swirski K (2009) Modelling the sofc behaviours by artificial neural network. Int J Hydrogen Energy 34(13):5546–5553CrossRefGoogle Scholar
  4. 4.
    Zhao F, Virkar A (2005) Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. J Power Sources 141(1):79–95CrossRefGoogle Scholar
  5. 5.
    Jiang Y, Virkar AV (2003) Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs. J Electrochem Soc 150(7):A942–A951CrossRefGoogle Scholar
  6. 6.
    Young D, Sukeshini AM, Cummins R, Xiao H, Rottmayer M, Reitz T (2008) Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells. J Power Sources 184(1):191–196CrossRefGoogle Scholar
  7. 7.
    Park HC, Virkar AV (2009) Bimetallic (Fe-Ni) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte. J Power Sources 186:133–137CrossRefGoogle Scholar
  8. 8.
    Zhou W, Shi H, Ran R, Cai R, Shao Z, Jin W (2008) Fabrication of an anode-supported yttria-stabilized zirconia thin film for solid-oxide fuel cells via wet powder spraying. J Power Sources 184(1):229–237CrossRefGoogle Scholar
  9. 9.
    Ding J, Liu J (2008) An anode-supported solid oxide fuel cell with spray-coated yttria-stabilized zirconia (YSZ) electrolyte film. Solid State Ion 179:1246–1249CrossRefGoogle Scholar
  10. 10.
    Madsen B, Barnett S (2005) Effect of fuel composition on the performance of ceramic-based solid oxide fuel cell anodes. Solid State Ion 176:2545–2553CrossRefGoogle Scholar
  11. 11.
    Ishihara T, Shibayama T, Honda M, Nishiguchi H, Takita Y (1999) Solid oxide fuel cell using co doped la(sr)ga(mg)o3 perovskite oxide with notably high power density at intermediate temperature. Chem Commun 13:1227–1228CrossRefGoogle Scholar
  12. 12.
    Cai Z, Lan TN, Wang S, Dokiya M (2002) Supported Zr(Sc)O2 SOFCs for reduced temperature prepared by slurry coating and co-firing. Solid State Ion 152–153(1):583–590CrossRefGoogle Scholar
  13. 13.
    Yao Z, Chunming Z, Ran R, Cai R, Shao Z, Farrusseng D (2009) A new symmetric solid oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-D perovskite oxide as both the anode and cathode. Acta Materilia 57(4):1665–1175Google Scholar
  14. 14.
    Virkar A, Wilson L (2003) Low-temperature, anode-supported high power density solid oxide fuel cells with nanostructured electrodes. Technical report, Department of Energy, USAGoogle Scholar
  15. 15.
    Demuth H, Beale M, Hagan M (2008) Neural Network Toolbox 6 User’s Guide MatlabGoogle Scholar
  16. 16.
    Foresee FD, Hagan MT (1997) Gauss-Newton approximation to Bayesian regularization. In: Proceedings of the 1997 International Joint Conference on Neural NetworksGoogle Scholar
  17. 17.
    Tabata Y, Orui H, Watanabe K, Chiba R, Arakawa M, Yamazaki Y (2004) Direct internal reforming characteristics of SOFC with a thin SASZ electrolyte and a LNF cathode. J Electrochem Soc 151(3):A418–A421CrossRefGoogle Scholar
  18. 18.
    Marsano F, Magistri L, Massardo AF (2004) Ejector performance influence on a solid oxide fuel cell anodic recirculation system. J Power Sources 129(2):216–228CrossRefGoogle Scholar
  19. 19.
    Ferrari ML, Traverso A, Magistri L, Massardo AF (2005) Influence of the anodic recirculation transient behaviour on the SOFC hybrid system performance. J Power Sources 149:22–32CrossRefGoogle Scholar
  20. 20.
    Milewski J, Miller A, Salacinski J (2007) Off-design analysis of SOFC hybrid system. Int J Hydrogen Energy 32(6):687–698CrossRefGoogle Scholar
  21. 21.
    Sokolow J, Zinger N (1965) Ejectors (in Polish). Wydawnictwa Naukowo-Techniczne, War- sawGoogle Scholar
  22. 22.
    Box MJ (1965) A new method of constrained optimization and a comparison with other methods. Comput J 8:42–52MathSciNetMATHGoogle Scholar
  23. 23.
    Bessette NF, Wepfer WJ (1996) Prediction of on-design and off-design performance for a solid oxide fuel cell power module. Energy Convers Manag 37(3):281–293CrossRefGoogle Scholar
  24. 24.
    Costamagna P, Magistri L, Massardo AF (2001) Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine. J Power Sources 96(2):352–368CrossRefGoogle Scholar
  25. 25.
    Chan SH, Ho HK, Tian Y (2003) Multi-level modeling of sofc-gas turbine hybrid system. Internat J Hydrogen Energy 28(8):889–900CrossRefGoogle Scholar
  26. 26.
    Stiller C, Thorud B, Bolland O (2005) Safe dynamic operation of a simple SOFC/GT hybrid system. In: Proceedings of the ASME Turbo EXPOGoogle Scholar
  27. 27.
    Stiller C, Thorud B, Bolland O, Kandepu R, Imsland L (2006) Control strategy for a solid oxide fuel cell and gas turbine hybrid system. J Power Sources 158(1):303–315CrossRefGoogle Scholar
  28. 28.
    Calise F, Palombo A, Vanoli L (2006) Design and partial load exergy analysis of hybrid SOFC–GT power plant. J Power Sources 158(1):225–244CrossRefGoogle Scholar
  29. 29.
    Stiller C (2006) Design, operation and control modeling of SOFC/GT Hybrid Systems. Phd thesis, Norwegian University of Science and TechnologyGoogle Scholar
  30. 30.
    Kurzke J (2004) Compressor and turbine maps for gas turbine performance computer programsGoogle Scholar
  31. 31.
    Brett DJ, Atkinson A, Cumming D, Ramrez-Cabrera E, Rudkin R, Brandon NP (2005) Methanol as a direct fuel in intermediate temperature (500–600°C) solid oxide fuel cells with copper based anodes. Chem Eng Sci 60(21):5649–5662CrossRefGoogle Scholar
  32. 32.
    Kee Robert J, Zhu Huayang, Goodwin David G (2005) Solid-oxide fuel cells with hydrocarbon fuels. In: Proceedings of the Combustion Institute 30(2):2379–2404Google Scholar
  33. 33.
    Fryda L, Panopoulos KD, Kakaras E (2008) Integrated CHP with autothermal biomass gasification and SOFC-MGT. Energy Convers Manag 49(2):281–290CrossRefGoogle Scholar
  34. 34.
    Tsiakaras P, Demin A (2001) Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol. J Power Sources 102(1–2):210–217CrossRefGoogle Scholar
  35. 35.
    Leone P, Lanzini A, Santarelli M, Cale M, Sagnelli F, Boulanger A, Scaletta A, Zitella P (2010) Methane-free biogas for direct feeding of solid oxide fuel cells. J Power Sources 195(1):239–248CrossRefGoogle Scholar
  36. 36.
    Van Herle J, Marchal F, Leuenberger S, Membrez Y, Bucheli O, Favrat D (2004) Process flow model of solid oxide fuel cell system supplied with sewage biogas. J Power Sources 131(1–2):127–141CrossRefGoogle Scholar
  37. 37.
    Staniforth J, Kendall K (1998) Biogas powering a small tubular solid oxide fuel cell. J Power Sources 71(1–2):275–277CrossRefGoogle Scholar
  38. 38.
    Piroonlerkgul P, Laosiripojana N, Adesina AA, Assabumrungrat S (2009) Performance of biogas-fed solid oxide fuel cell systems integrated with membrane module for co2 removal. Chem Eng Process Process Intensif 48(2):672–682CrossRefGoogle Scholar
  39. 39.
    Staniforth J, Ormerod RM (2002) Implications for using biogas as a fuel source for solid oxide fuel cells: internal dry reforming in a small tubular solid oxide fuel cell. Catal Lett 81(1):19–23CrossRefGoogle Scholar
  40. 40.
    Jamsak W, Assabumrungrat S, Douglas PL, Laosiripojana N, Suwanwarangkul R, Charojrochkul S, Croiset E (2007) Performance of ethanol-fuelled solid oxide fuel cells: proton and oxygen ion conductors. Chem Eng J 133(1–3):187–194CrossRefGoogle Scholar
  41. 41.
    Mahishi MR, Goswami DY (2007) Thermodynamic optimization of biomass gasifier for hydrogen production. Int J Hydrogen Energy 32(16):3831–3840CrossRefGoogle Scholar
  42. 42.
    Sequeira CAC, Brito PSD, Mota AF, Carvalho JL, Rodrigues LFFTTG, Santos DMF, Barrio DB, Justo DM (2007) Fermentation, gasification and pyrolysis of carbonaceous residues towards usage in fuel cells. Energy Convers Manag 48(7):2203–2220CrossRefGoogle Scholar
  43. 43.
    Iordanidis AA, Kechagiopoulos PN, Voutetakis SS, Lemonidou AA, Vasalos IA (2006) Autothermal sorption-enhanced steam reforming of bio-oil/biogas mixture and energy generation by fuel cells: concept analysis and process simulation. Int J Hydrogen Energy 31(8):1058–1065CrossRefGoogle Scholar
  44. 44.
    Eurostat. web site: Scholar
  45. 45.
    Assabumrungrat S, Laosiripojana N, Pavarajarn V, Sangtongkitcharoen W, Tangjitmatee A, Praserthdam P (2005) Thermodynamic analysis of carbon formation in a solid oxide fuel cell with a direct internal reformer fuelled by methanol. J Power Sources 139(1–2):55–60CrossRefGoogle Scholar
  46. 46.
    Rabenstein G, Hacker V (2008) Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: a thermodynamic analysis. J Power Sources 185(2):1293–1304CrossRefGoogle Scholar
  47. 47.
    Smith JM, Van Ness HC (1959) Introduction to chemical engineering thermodynamics. McGraw-Hill Book Company, Inc. LondonGoogle Scholar
  48. 48.
    Corporation S-WP (2001) A High Efficiency PSOFC/ATS-Gas Turbine Power System—Final Report, Tech. Rep., Siemens-Westinghouse Power Corporation Google Scholar

Copyright information

©  Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Institute of Heat EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations