Skip to main content

Part of the book series: Communications and Control Engineering ((CCE))

  • 1948 Accesses

Abstract

Chapter 3 presents stability theory for switched dynamical systems under constrained switching. There are three types of constrained switching addressed in this chapter. The first type of constrained switching is the random switching with a preassigned jump distribution. When the subsystems are linear and the switching is governed by a Markov process, the switched linear system is known to be a jump linear system. We introduce various stability concepts and their criteria and establish the connections to the guaranteed stability criteria in Chapter 2. The second is the piecewise affine systems, where the state space is partitioned into a set of polyhedral cells each relating to a subsystem, and hence the switching is totally autonomous. The piecewise quadratic Lyapunov approach, the surface Lyapunov approach, and the transition graph approach are introduced. The pros and cons of the approaches are compared and discussed. The third type of constrained switching is the dwell-time switching, where the switching duration between any two consecutive switches admits a positive lower bound. We address both the stability analysis, where the dwell time is preassigned, and the stabilizing switching design, where the minimum or maximum dwell time is to be designed. The design captures the capability and limitation of the switching mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angeli D. A note on stability of arbitrarily switched homogeneous systems. Preprint; 1999.

    Google Scholar 

  2. Arnold L, Wihstutz V, editors. Lyapunov exponents. New York: Springer; 1986.

    MATH  Google Scholar 

  3. Asarin E, Bournez O, Dang T, Maler O. Approximate reachability analysis of piecewise-linear dynamical systems. In: Lynch N, Krogh BH, editors. Hybrid systems: computation and control. Berlin: Springer; 2000. p. 20–31.

    Chapter  Google Scholar 

  4. Bemporad A, Morari M. Control of systems integrating logic, dynamics, and constraints. Automatica. 1999;35(3):407–27.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bharucha BH. On the stability of randomly varying systems. PhD dissertation, Dept Elec Eng, Univ Calif Berkeley; 1961.

    Google Scholar 

  6. Biswas P, Grieder P, Lofberg J, Morari M. A survey on stability analysis of discrete-time piecewise affine systems. In: Proc IFAC World Congress, Prague, Czech Republic; 2005.

    Google Scholar 

  7. Blondel VD, Tsitsiklis JN. Complexity of stability and controllability of elementary hybrid systems. Automatica. 1999;35(3):479–89.

    Article  MATH  MathSciNet  Google Scholar 

  8. Bolzern P, Colaneria P, De Nicolaob G. On almost sure stability of continuous-time Markov jump linear systems. Automatica. 2006;42(6):983–8.

    Article  MATH  MathSciNet  Google Scholar 

  9. Bolzern P, Colaneria P, De Nicolaob G. Markov jump linear systems with switching transition rates: mean square stability with dwell-time. Automatica. 2010;46(6):1081–8.

    Article  MATH  Google Scholar 

  10. Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear matrix inequalities in systems and control theory. Philadelphia: SIAM; 1994.

    Google Scholar 

  11. Camlibel MK, Heemels WPMH, Schumacher JM. Algebraic necessary and sufficient conditions for the controllability of conewise linear systems. IEEE Trans Autom Control. 2008;53(3):762–74.

    Article  MathSciNet  Google Scholar 

  12. Camlibel MK, Pang JS, Shen J. Conewise linear systems: non-Zenoness and observability. SIAM J Control Optim. 2006;45(5):1769–800.

    Article  MATH  MathSciNet  Google Scholar 

  13. Chesi G, Colaneri P, Geromel JC, Middleton R, Shorten R. On the minimum dwell time for linear switching systems. In: Proc ACC; 2010. p. 2487–92.

    Google Scholar 

  14. Chesi G, Garulli A, Tesi A, Vicino A. Homogeneous polynomial forms for robustness analysis of uncertain systems. Berlin: Springer; 2009.

    Book  MATH  Google Scholar 

  15. Costa OLV, Fragoso MD, Marquez RP. Discrete-time Markov jump linear systems. London: Springer; 2005.

    MATH  Google Scholar 

  16. Dai XP, Huang Y, Xiao MQ. Almost sure stability of discrete-time switched linear systems: a topological point of view. SIAM J Control Optim. 2008;47(4):2137–56.

    Article  MATH  MathSciNet  Google Scholar 

  17. Fang Y. Stability analysis of linear control systems with uncertain parameters. PhD dissertation, Dept Syst Contr Ind Eng, Case Western Reserve Univ; 1994.

    Google Scholar 

  18. Fang Y. A new general sufficient condition for almost sure stability of jump linear systems. IEEE Trans Autom Control. 1997;42:378–82.

    Article  MATH  Google Scholar 

  19. Fang Y, Loparo KA. Stochastic stability of jump linear systems. IEEE Trans Autom Control. 2002;47(7):1204–8.

    Article  MathSciNet  Google Scholar 

  20. Fang Y, Loparo KA. On the relationship between the sample path and moment Lyapunov exponents for jump linear systems. IEEE Trans Autom Control. 2002;47(9):1556–60.

    Article  MathSciNet  Google Scholar 

  21. Fang Y, Loparo KA. Stabilization of continuous-time jump linear systems. IEEE Trans Autom Control. 2002;47(10):1590–603.

    Article  MathSciNet  Google Scholar 

  22. Feng G. Stability analysis of discrete time fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans Fuzzy Syst. 2004;12(1):22–8.

    Article  Google Scholar 

  23. Feng X, Loparo KA, Ji Y, Chizeck HJ. Stochastic stability properties of jump linear systems. IEEE Trans Autom Control. 1992;37(1):38–53.

    Article  MATH  MathSciNet  Google Scholar 

  24. Goebel R, Sanfelice RG, Teel AR. Invariance principles for switching systems via hybrid systems techniques. Syst Control Lett. 2008;57(12):980–6.

    Article  MATH  MathSciNet  Google Scholar 

  25. Goncalves JM, Megretski A, Dahleh A. Global stability of relay feedback systems. IEEE Trans Autom Control. 2001;46(4):550–62.

    Article  MATH  MathSciNet  Google Scholar 

  26. Goncalves JM, Megretski A, Dahleh A. Global analysis of piecewise linear systems using impact maps and surface Lyapunov functions. IEEE Trans Autom Control. 2003;48(12):2089–106.

    Article  MathSciNet  Google Scholar 

  27. Griggs WM, King CK, Shorten RN, Mason O, Wulff K. Quadratic Lyapunov functions for systems with state-dependent switching. Linear Algebra Appl. 2010;433(1):52–63.

    Article  MATH  MathSciNet  Google Scholar 

  28. Han TT, Ge SS, Lee TH. Persistent dwell-time switched nonlinear systems: variation paradigm and gauge design. IEEE Trans Autom Control. 2010;55(2):321–37.

    MathSciNet  Google Scholar 

  29. Hedlund S, Johansson M. PWLTOOL: a MATLAB toolbox for analysis of piecewise linear systems. Dept Automat Contr, Lund Inst Tech; 1999.

    Google Scholar 

  30. Heemels WP, Brogliato B. The complementarity class of hybrid dynamical systems. Eur J Control. 2003;9(2–3):322–60.

    Article  Google Scholar 

  31. Heemels WP, De Schutter B, Bemporad A. Equivalence of hybrid dynamical models. Automatica. 2001;37(7):1085–91.

    Article  MATH  Google Scholar 

  32. Hegselmann R, Krause U. Opinion dynamics and bounded confidence: models, analysis, and simulation. J Artif Soc Soc Simul. 2002;5(3):2–34.

    Google Scholar 

  33. Hespanha JP, Morse AS. Stability of switched systems with average dwell-time. In: Proc IEEE CDC; 1999. p. 2655–60.

    Google Scholar 

  34. Imura J. Well-posedness analysis of switch-driven piecewise affine systems. IEEE Trans Autom Control. 2003;48(11):1926–35.

    Article  MathSciNet  Google Scholar 

  35. Iwatania Y, Hara S. Stability tests and stabilization for piecewise linear systems based on poles and zeros of subsystems. Automatica. 2006;42(10):1685–95.

    Article  MathSciNet  Google Scholar 

  36. Johansson M. Piecewise linear control systems. New York: Springer; 2003.

    MATH  Google Scholar 

  37. Johansson M, Rantzer A. Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans Autom Control. 1998;43:555–9.

    Article  MATH  MathSciNet  Google Scholar 

  38. Khas’minskii RZ. Necessary and sufficient condition for the asymptotic stability of linear stochastic systems. Theory Probab Appl. 1967;12(1):144–7.

    Article  MathSciNet  Google Scholar 

  39. Kozin F. On relations between moment properties and almost sure Lyapunov stability for linear stochastic systems. J Math Anal Appl. 1965;10:324–53.

    Article  MathSciNet  Google Scholar 

  40. Kozin F. A survey of stability of stochastic systems. Automatica. 1969;5(1):95–112.

    Article  MATH  MathSciNet  Google Scholar 

  41. Kushner HJ. Stochastic stability and control. New York: Academic Press; 1967.

    MATH  Google Scholar 

  42. Lee JW, Dullerud GE. Uniform stabilization of discrete-time switched and Markovian jump linear systems. Automatica. 2006;42(2):205–18.

    Article  MATH  MathSciNet  Google Scholar 

  43. Leenaerts DMW. On linear dynamic complementary systems. IEEE Trans Circuits Syst I, Fundam Theory Appl. 1999;46(8):1022–6.

    Article  MATH  Google Scholar 

  44. Li ZG, Soh YC, Wen CY. Sufficient conditions for almost sure stability of jump linear systems. IEEE Trans Autom Control. 2000;45(7):1325–9.

    Article  MATH  MathSciNet  Google Scholar 

  45. Marcelo D, Fragoso MD, Costa OLV. A unified approach for stochastic and mean square stability of continuous-time linear systems with Markovian jumping parameters and additive disturbances. SIAM J Control Optim. 2005;44(4):1165–91.

    Article  MATH  MathSciNet  Google Scholar 

  46. Mariton M. Almost sure and moment stability of jump linear systems. Syst Control Lett. 1988;11(5):393–7.

    Article  MATH  MathSciNet  Google Scholar 

  47. Mariton M. Jump linear systems in automatic control. New York: Marcel Dekker; 1990.

    Google Scholar 

  48. Morari M, Baotic M, Borrelli F. Hybrid systems modeling and control. Eur J Control. 2003;9(2–3):177–89.

    Google Scholar 

  49. Morse AS. Supervisory control of families of linear set-point controllers, part 1: Exact matching. IEEE Trans Autom Control. 1996;41(10):1413–31.

    Article  MATH  MathSciNet  Google Scholar 

  50. Opoiytsev VI. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans Mosc Math Soc. 1968;19:197–231.

    Google Scholar 

  51. Riedinger P, Sigalotti M, Daafouz J. On the algebraic characterization of invariant sets of switched linear systems. Automatica. 2010;46(6):1047–52.

    Article  MATH  Google Scholar 

  52. Shen JL. Observability analysis of conewise linear systems via directional derivative and positive invariance techniques. Automatica. 2010;46(5):843–51.

    Article  MATH  Google Scholar 

  53. Shorten RN, Narendra KS. Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for two stable second order linear time-invariant systems. In: Proc ACC; 1999. p. 1410–4.

    Google Scholar 

  54. Sontag ED. Nonlinear regulation: the piecewise linear approach. IEEE Trans Autom Control. 1981;26(2):346–58.

    Article  MATH  MathSciNet  Google Scholar 

  55. Sontag ED. Interconnected automata and linear systems: a theoretical framework in discrete-time. In: Alur R, Henzinger TA, Sontag ED, editors. Hybrid systems III—Verification and control. Berlin: Springer; 1996. p. 436–48.

    Google Scholar 

  56. Sun Z. Stabilizability and insensitiveness of switched systems. IEEE Trans Autom Control. 2004;49(7):1133–7.

    Article  Google Scholar 

  57. Sun Z. A graphic approach for stability of piecewise linear systems. In: Proc Chinese conf dec contr; 2009. p. 1016–9.

    Google Scholar 

  58. Sun Z. The problem of slow switching for switched linear systems. In: Proc ICCAS-SICE; 2009. p. 4843–6.

    Google Scholar 

  59. Sun Z. Stability and contractivity of conewise linear systems. In: Proc IEEE MSC; 2010. p. 2094–8.

    Google Scholar 

  60. Sun Z. Stability of piecewise linear systems revisited. Annu Rev Control. 2010;34(2):221–31.

    Article  Google Scholar 

  61. Sun Z, Ge SS. Switched linear systems: control and design. London: Springer; 2005.

    MATH  Google Scholar 

  62. Sun Z, Shorten RN. On convergence rates of simultaneously triangularizable switched linear systems. IEEE Trans Autom Control. 2005;50(8):1224–8.

    Article  MathSciNet  Google Scholar 

  63. Tsitsiklis JN, Blondel VD. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard, when not impossible, to compute and to approximate. Math Control Signals Syst. 1997;10(1):31–40.

    Article  MATH  MathSciNet  Google Scholar 

  64. Veres SM. The geometric bounding toolbox, user’s manual & reference. UK: SysBrain; 2001.

    Google Scholar 

  65. Wirth F. A converse Lyapunov theorem for linear parameter-varying and linear switching systems. SIAM J Control Optim. 2005;44(1):210–39.

    Article  MATH  MathSciNet  Google Scholar 

  66. Xia X. Well-posedness of piecewise-linear systems with multiple modes and multiple criteria. IEEE Trans Autom Control. 2002;47(10):1716–20.

    Article  Google Scholar 

  67. Zhang LX, Gao HJ. Asynchronously switched control of switched linear systems with average dwell time. Automatica. 2010;46(5):953–8.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sun, Z., Ge, S.S. (2011). Constrained Switching. In: Stability Theory of Switched Dynamical Systems. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-256-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-256-8_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-255-1

  • Online ISBN: 978-0-85729-256-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics