Tissue Engineering for Facial Reconstruction

  • Tsung-Lin Yang
  • James J. Yoo
  • Maria Z. Siemionow
  • Anthony Atala


Craniofacial structures are essential for many physiological functions, including vision, olfaction, hearing, and food intake. In addition, facial features are critical for the development of personal identity, communication, and social interaction. Thus, damage to the face resulting from traumatic injury or disease can be particularly devastating to a patient’s quality of life, and the development of methods to restore normal craniofacial structures is essential. In recent years, facial transplantation using microsurgical techniques has become a reality, but this technique is limited by a shortage of donor tissue and the need for chronic administration of immunosuppressive drugs to prevent graft rejection. Recent advances in tissue engineering and regenerative medicine provide opportunities to create biological substitutes that can be used in reconstructive surgery. This field applies the principles of cell transplantation, material science, and bioengineering to develop tissues and organs in the laboratory that can then be implanted into a patient to replace damaged or missing structures. In this chapter, we will discuss these techniques in detail, and we will illustrate how they can be used to revolutionize the concepts of facial reconstruction.


Vascular Endothelial Growth Factor Tissue Engineering Adult Stem Cell Engineer Tissue Skin Equivalent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Amniotic-fluid and placental-derived stem


Bladder submucosa


Endothelial cells


Extracellular matrix


Embryonic stem


Food and Drug Administration


induced Pluripotent State


Mouse embryonic fibroblasts


Polyglycolic acid


Polylactic acid


Poly(lactic-co-glycolic acid)


Small-intestinal submucosa


Vascular endothelial growth factor



The authors wish to thank Dr. Jennifer L. Olson for editorial assistance with this manuscript.


  1. 1.
    Sarwer D, Bartlett S, Whitaker L, Paige K, Pertschuk M, Wadden T. Adult psychological functioning of individuals born with craniofacial anomalies. Plast Reconstr Surg. 1999;103:412-418.PubMedCrossRefGoogle Scholar
  2. 2.
    Dropkin M. Body image and quality of life after head and neck cancer surgery. Cancer Pract. 1999;7:309-313.PubMedCrossRefGoogle Scholar
  3. 3.
    Wallace CG, Wei FC. The current status, evolution and future of facial reconstruction. Chang Gung Med J. 2008;31:441-449.PubMedGoogle Scholar
  4. 4.
    Menick F. Artistry in aesthetic surgery aesthetic perception and the subunit principle. Clin Plast Surg. 1987;14:723-735.PubMedGoogle Scholar
  5. 5.
    Birgfeld C, Low D. Total face reconstruction using a pre-expanded, bilateral, extended, parascapular free flap. Ann Plast Surg. 2006;56:565-568.PubMedCrossRefGoogle Scholar
  6. 6.
    Devauchelle B, Badet L, Lengele B, et al. First human face allograft: Early report. Lancet. 2006;368:203-209.PubMedCrossRefGoogle Scholar
  7. 7.
    Siemionow M, Papay F, Alam D, et al. Near-total human face transplantation for a severely disfigured patient in the USA. Lancet. 2009;374:203-209.PubMedCrossRefGoogle Scholar
  8. 8.
    Langer R, Vacanti J, Vacanti C, Atala A, Freed L, Vunjak-Novakovic G. Tissue engineering: Biomedical applications. Tissue Eng. 1995;1:151-161.PubMedCrossRefGoogle Scholar
  9. 9.
    Ladd MR, Lee SJ, Atala A, Yoo JJ. Bioreactor maintained living skin matrix. Tissue Eng A. 2009;15:861-868.CrossRefGoogle Scholar
  10. 10.
    Atala A. Tissue engineering of artificial organs. J Endourol. 2000;14:49-57.PubMedCrossRefGoogle Scholar
  11. 11.
    Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241-1246.PubMedCrossRefGoogle Scholar
  12. 12.
    Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372:2023-2030.PubMedCrossRefGoogle Scholar
  13. 13.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920-926.PubMedCrossRefGoogle Scholar
  14. 14.
    Zaky SH, Cancedda R. Engineering craniofacial structures: Facing the challenge. J Dent Res. 2009;88:1077-1091.PubMedCrossRefGoogle Scholar
  15. 15.
    Buxton PG, Cobourne MT. Regenerative approaches in the craniofacial region: Manipulating cellular progenitors for oro-facial repair. Oral Dis. 2007;13:452-460.PubMedCrossRefGoogle Scholar
  16. 16.
    Bergsma JE, Rozema FR, Bos RR, Boering G, de Bruijn WC, Pennings AJ. In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polyactide particles [see comment]. Biomaterials. 1995;16:267-274.PubMedCrossRefGoogle Scholar
  17. 17.
    Hynes RO. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11-25.PubMedCrossRefGoogle Scholar
  18. 18.
    Deuel TF. Growth factors. In: Lanza R, Langer R, Chick WL, eds. Principles of Tissue Engineering. New York: Academic; 1997:133-149.Google Scholar
  19. 19.
    Barrera DA, Zylstra E, Lansbury PT, Langer R. Synthesis and RGD peptide modification of a new biodegradable copolymer poly (lactic acid-co-lysine). J Am Chem Soc. 1993;115:11010-11011.CrossRefGoogle Scholar
  20. 20.
    Cook AD, Hrkach JS, Gao NN, et al. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res. 1997;35:513-523.PubMedCrossRefGoogle Scholar
  21. 21.
    Atala A. Engineering tissues, organs and cells. J Tissue Eng Regen Med. 2007;1:83-96.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 1998;16:224-230.PubMedCrossRefGoogle Scholar
  23. 23.
    Yoo JJ, Lee JE, Kim HJ, et al. Comparative in vitro and in vivo studies using a bioactive poly(epsilon-caprolactone)-organosiloxane nanohybrid containing calcium salt. J Biomed Mater Res B Appl Biomater. 2007;83:189-198.PubMedGoogle Scholar
  24. 24.
    Lee SJ, Van Dyke M, Atala A, Yoo JJ. Host cell mobilization for in situ tissue regeneration. Rejuvenation Res. 2008;11:747-756.PubMedCrossRefGoogle Scholar
  25. 25.
    Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials. 2008;29:2899-2906.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee SJ, Liu J, Oh SH, Soker S, Atala A, Yoo JJ. Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 2008;29:2891-2898.PubMedCrossRefGoogle Scholar
  27. 27.
    Lee SJ, Oh SH, Liu J, Soker S, Atala A, Yoo JJ. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds. Biomaterials. 2008;29:1422-1430.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee SJ, Yoo JJ, Lim GJ, Atala A, Stitzel J. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J Biomed Mater Res A. 2007;83:999-1008.PubMedGoogle Scholar
  29. 29.
    Li ST. Biologic biomaterials: Tissue derived biomaterials (collagen). In: JD B, ed. The Biomedical Engineering Handbook. Boca Raton, FL: CRS Press; 1995:627-647.Google Scholar
  30. 30.
    Furthmayr H, Timpl R. Immunochemistry of collagens and procollagens. Int Rev Connect Tissue Res. 1976;7:61-99.PubMedGoogle Scholar
  31. 31.
    Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: Development of novel biomaterials and applications. Pediatr Res. 2008;63:492-496.PubMedCrossRefGoogle Scholar
  32. 32.
    Silver FH, Pins G. Cell growth on collagen: A review of tissue engineering using scaffolds containing extracellular matrix. J Long Term Effects Med Implants. 1992;2:67-80.Google Scholar
  33. 33.
    Sams AE, Nixon AJ. Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteoarthritis Cartilage. 1995;3:47-59.PubMedCrossRefGoogle Scholar
  34. 34.
    Smidsrod O, Skjak-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8:71-78.PubMedCrossRefGoogle Scholar
  35. 35.
    Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980; 2010: 908–910.CrossRefGoogle Scholar
  36. 36.
    Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45-53.PubMedCrossRefGoogle Scholar
  37. 37.
    Dahms SE, Piechota HJ, Dahiya R, Lue TF, Tanagho EA. Composition and biomechanical properties of the bladder acellular matrix graft: Comparative analysis in rat, pig and human. Br J Urol. 1998;82:411-419.PubMedCrossRefGoogle Scholar
  38. 38.
    Piechota HJ, Dahms SE, Nunes LS, Dahiya R, Lue TF, Tanagho EA. In vitro functional properties of the rat bladder regenerated by the bladder acellular matrix graft. J Urol. 1998;159:1717-1724.PubMedCrossRefGoogle Scholar
  39. 39.
    Yoo JJ, Meng J, Oberpenning F, Atala A. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology. 1998;51:221-225.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology. 1999;54:407-410.PubMedCrossRefGoogle Scholar
  41. 41.
    Probst M, Dahiya R, Carrier S, Tanagho EA. Reproduction of functional smooth muscle tissue and partial bladder replacement. Br J Urol. 1997;79:505-515.PubMedGoogle Scholar
  42. 42.
    Gilding D. Biodegradable polymers. In: Williams D, ed. Biocompatibility of Clinical Implant Materials. Boca Raton, FL: CRC Press; 1981:209-232.Google Scholar
  43. 43.
    Freed LE, Vunjak-Novakovic G, Biron RJ, et al. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (NY). 1994;12:689-693.CrossRefGoogle Scholar
  44. 44.
    Mikos AG, Lyman MD, Freed LE, Langer R. Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture. Biomaterials. 1994;15:55-58.PubMedCrossRefGoogle Scholar
  45. 45.
    Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res. 1998;42:396-402.PubMedCrossRefGoogle Scholar
  46. 46.
    Han D, Gouma PI. Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine. 2006;2:37-41.PubMedGoogle Scholar
  47. 47.
    Intveld PJA, Shen ZR, Takens GAJ. Glycine glycolic acid based copolymers. J Polym Sci Polym Chem. 1994;32:1063-1069.CrossRefGoogle Scholar
  48. 48.
    Peppas NA, Langer R. New challenges in biomaterials [see comment]. Science. 1994;263:1715-1720.PubMedCrossRefGoogle Scholar
  49. 49.
    Cilento BG, Freeman MR, Schneck FX, Retik AB, Atala A. Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J Urol. 1994;152(2 Pt 2):665-670.PubMedGoogle Scholar
  50. 50.
    Scriven SD, Booth C, Thomas DF, Trejdosiewicz LK, Southgate J. Reconstitution of human urothelium from monolayer cultures. J Urol. 1997;158(3 Pt 2):1147-1152.PubMedGoogle Scholar
  51. 51.
    Liebert M, Hubbel A, Chung M, et al. Expression of mal is associated with urothelial differentiation in vitro: Identification by differential display reverse-transcriptase polymerase chain reaction. Differentiation. 1997;61:177-185.PubMedCrossRefGoogle Scholar
  52. 52.
    Puthenveettil JA, Burger MS, Reznikoff CA. Replicative senescence in human uroepithelial cells. Adv Exp Med Biol. 1999;462:83-91.PubMedGoogle Scholar
  53. 53.
    Atala A, Vacanti JP, Peters CA, Mandell J, Retik AB, Freeman MR. Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J Urol. 1992;148(2 Pt 2):658-662.PubMedGoogle Scholar
  54. 54.
    Atala A, Cima LG, Kim W, et al. Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux. J Urol. 1993;150(2 Pt 2):745-747.PubMedGoogle Scholar
  55. 55.
    Atala A, Freeman MR, Vacanti JP, Shepard J, Retik AB. Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J Urol. 1993;150(2 pt 2):608-612.PubMedGoogle Scholar
  56. 56.
    Atala A, Kim W, Paige KT, Vacanti CA, Retik AB. Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J Urol. 1994;152(2 pt 2):641-643. Discussion 4.PubMedGoogle Scholar
  57. 57.
    Atala A, Schlussel RN, Retik AB. Renal cell growth in vivo after attachment to biodegradable polymer scaffolds. J Urol. 1995;153:4.CrossRefGoogle Scholar
  58. 58.
    Atala A, Guzman L, Retik AB. A novel inert collagen matrix for hypospadias repair. J Urol. 1999;162(3 Pt 2):1148-1151.PubMedGoogle Scholar
  59. 59.
    Atala A. Tissue engineering in the genitourinary system. In: Atala A, Mooney DJ, eds. Tissue engineering. Boston, MA: Birkhauser Press; 1997:149.Google Scholar
  60. 60.
    Atala A. Autologous cell transplantation for urologic reconstruction. J Urol. 1998;159:2-3.PubMedCrossRefGoogle Scholar
  61. 61.
    Yoo JJ, Atala A. A novel gene delivery system using urothelial tissue engineered neo-organs. J Urol. 1997;158(3 Pt 2):1066-1070.PubMedGoogle Scholar
  62. 62.
    Fauza DO, Fishman SJ, Mehegan K, Atala A. Videofetoscopically assisted fetal tissue engineering: Skin replacement. J Pediatr Surg. 1998;33:357-361.PubMedCrossRefGoogle Scholar
  63. 63.
    Fauza DO, Fishman SJ, Mehegan K, Atala A. Videofetoscopically assisted fetal tissue engineering: Bladder augmentation. J Pediatr Surg. 1998;33:7-12.PubMedCrossRefGoogle Scholar
  64. 64.
    Machluf M, Atala A. Emerging concepts for tissue and organ transplantation. Graft. 1998;1:31-37.Google Scholar
  65. 65.
    Amiel GE, Atala A. Current and future modalities for functional renal replacement. Urol Clin North Am. 1999;26:235-246.PubMedCrossRefGoogle Scholar
  66. 66.
    Kershen RT, Atala A. New advances in injectable therapies for the treatment of incontinence and vesicoureteral reflux. Urol Clin North Am. 1999;26:81-94.PubMedCrossRefGoogle Scholar
  67. 67.
    Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering [see comment]. Nat Biotechnol. 1999;17:149-155.PubMedCrossRefGoogle Scholar
  68. 68.
    Park HJ, Yoo JJ, Kershen RT, Moreland R, Atala A. Reconstitution of human corporal smooth muscle and endothelial cells in vivo. J Urol. 1999;162(3 Pt 2):1106-1109.PubMedGoogle Scholar
  69. 69.
    Lin HK, Cowan R, Moore P, et al. Characterization of neuropathic bladder smooth muscle cells in culture. J Urol. 2004;171:1348-1352.PubMedCrossRefGoogle Scholar
  70. 70.
    Lai JY, Yoon CY, Yoo JJ, Wulf T, Atala A. Phenotypic and functional characterization of in vivo tissue engineered smooth muscle from normal and pathological bladders. J Urol. 2002;168(4 Pt 2):1853-1857. Discussion 8.PubMedGoogle Scholar
  71. 71.
    Brivanlou AH, Gage FH, Jaenisch R, Jessell T, Melton D, Rossant J. Stem cells. Setting standards for human embryonic stem cells [see comment]. Science. 2003;300:913-916.PubMedCrossRefGoogle Scholar
  72. 72.
    Ballas CB, Zielske SP, Gerson SL. Adult bone marrow stem cells for cell and gene therapies: Implications for greater use. J Cell Biochem Suppl. 2002;38:20-28.PubMedCrossRefGoogle Scholar
  73. 73.
    Jiao J, Chen DF. Induction of neurogenesis in nonconventional neurogenic regions of the adult central nervous system by niche astrocyte-produced signals. Stem Cells. 2008;26:1221-1230.PubMedCrossRefGoogle Scholar
  74. 74.
    Taupin P. Therapeutic potential of adult neural stem cells. Recent Pat CNS Drug Discov. 2006;1:299-303.PubMedCrossRefGoogle Scholar
  75. 75.
    Jensen UB, Yan X, Triel C, Woo SH, Christensen R, Owens DM. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J Cell Sci. 2008;121(Pt 5):609-617.PubMedCrossRefGoogle Scholar
  76. 76.
    Crisan M, Casteilla L, Lehr L, et al. A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cells. 2008;26:2425-2433.PubMedCrossRefGoogle Scholar
  77. 77.
    Weiner LP. Definitions and criteria for stem cells. Meth Mol Biol. 2008;438:3-8.CrossRefGoogle Scholar
  78. 78.
    Devine SM. Mesenchymal stem cells: Will they have a role in the clinic? J Cell Biochem Suppl. 2002;38:73-79.PubMedCrossRefGoogle Scholar
  79. 79.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR. Pluripotency of mesenchymal stem cells derived from adult marrow [see comment][erratum appears in Nature. 2007;447:879–880]. Nature. 2002;418:41-49.PubMedCrossRefGoogle Scholar
  80. 80.
    Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341-347.PubMedCrossRefGoogle Scholar
  81. 81.
    da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26:2287-2299.PubMedCrossRefGoogle Scholar
  82. 82.
    Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y. Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain [see comment]. Cell. 2007;130:1146-1158.PubMedCrossRefGoogle Scholar
  83. 83.
    Luttun A, Ross JJ, Verfaillie C, Aranguren X, Prosper F. Unit 22 F.9: Differentiation of multipotent adult progenitor cells into functional endothelial and smooth muscle cells. Current Protocols in Immunology. Hoboken, NJ: Wiley; 2006.Google Scholar
  84. 84.
    Mimeault M, Batra SK. Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev. 2008;4:27-49.PubMedCrossRefGoogle Scholar
  85. 85.
    Ikeda E, Yagi K, Kojima M, et al. Multipotent cells from the human third molar: Feasibility of cell-based therapy for liver disease. Differentiation. 2008;76:495-505.PubMedCrossRefGoogle Scholar
  86. 86.
    Nolen-Walston RD, Kim CF, Mazan MR, et al. Cellular kinetics and modeling of bronchioalveolar stem cell response during lung regeneration. Am J Physiol Lung Cell Mol Physiol. 2008;294:L1158-L1165.PubMedCrossRefGoogle Scholar
  87. 87.
    in’t Anker P, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potentia. Haematologica. 2003;88:845-852.Google Scholar
  88. 88.
    Hristov M, Zernecke A, Schober A, Weber C. Adult progenitor cells in vascular remodeling during atherosclerosis. Biol Chem. 2008;389:837-844.PubMedCrossRefGoogle Scholar
  89. 89.
    De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L. Isolation of amniotic stem cell lines with potential for therapy [see comment]. Nat Biotechnol. 2007;25:100-106.PubMedCrossRefGoogle Scholar
  90. 90.
    Kolambkar YM, Peister A, Soker S, Atala A, Guldberg RE. Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol. 2007;38:405-413.PubMedCrossRefGoogle Scholar
  91. 91.
    Perin L, Giuliani S, Jin D, et al. Renal differentiation of amniotic fluid stem cells. Cell Prolif. 2007;40:936-948.PubMedCrossRefGoogle Scholar
  92. 92.
    Warburton D, Perin L, Defilippo R, Bellusci S, Shi W, Driscoll B. Stem/progenitor cells in lung development, injury repair, and regeneration. Proc Am Thorac Soc. 2008;5:703-706.PubMedCrossRefGoogle Scholar
  93. 93.
    De Coppi P, Callegari A, Chiavegato A, et al. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol. 2007;177:369-376.PubMedCrossRefGoogle Scholar
  94. 94.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-676.PubMedCrossRefGoogle Scholar
  95. 95.
    Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448:318-324.PubMedCrossRefGoogle Scholar
  96. 96.
    Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861-872.PubMedCrossRefGoogle Scholar
  97. 97.
    Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917-1920.PubMedCrossRefGoogle Scholar
  98. 98.
    Engelmayr GC Jr, Hildebrand DK, Sutherland FW, Mayer JE Jr, Sacks MS. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials. 2003;24:2523-2532.PubMedCrossRefGoogle Scholar
  99. 99.
    Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP. Functional living trileaflet heart valves grown in vitro. Circulation. 2000;102(19 Suppl 3):III44-III49.PubMedGoogle Scholar
  100. 100.
    Hoerstrup SP, Sodian R, Sperling JS, Vacanti JP, Mayer JE Jr. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng. 2000;6:75-79.PubMedCrossRefGoogle Scholar
  101. 101.
    Lee DJ, Steen J, Jordan JE, et al. Endothelialization of heart valve matrix using a computer-assisted pulsatile bioreactor. Tissue Eng A. 2009;15:807-814.CrossRefGoogle Scholar
  102. 102.
    Tillman BW, Yazdani SK, Lee SJ, Geary RL, Atala A, Yoo JJ. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials. 2009;30:583-588.PubMedCrossRefGoogle Scholar
  103. 103.
    Farhat WA, Chen J, Haig J, et al. Porcine bladder acellular matrix (ACM): Protein expression, mechanical properties. Biomed Mater. 2008;3:025015.PubMedCrossRefGoogle Scholar
  104. 104.
    Wallis MC, Lorenzo AJ, Farhat WA, Bagli DJ, Khoury AE, Pippi Salle JL. Risk assessment of incidentally detected complex renal cysts in children: Potential role for a modification of the Bosniak classification. J Urol. 2008;180:317-321.PubMedCrossRefGoogle Scholar
  105. 105.
    Donnelly K, Khodabukus A, Philp A, Deldicque L, Dennis RG, Baar K. A novel bioreactor for stimulating skeletal muscle in vitro. Tissue Eng C Meth. 2010;16:711-718.CrossRefGoogle Scholar
  106. 106.
    Oh SH, Ward CL, Atala A, Yoo JJ, Harrison BS. Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials. 2009;30:757-762.PubMedCrossRefGoogle Scholar
  107. 107.
    Campbell PG, Weiss LE. Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther. 2007;7:1123-1127.PubMedCrossRefGoogle Scholar
  108. 108.
    Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J. 2006;1:910-917.PubMedCrossRefGoogle Scholar
  109. 109.
    Nakamura M, Kobayashi A, Takagi F, et al. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 2005;11:1658-1666.PubMedCrossRefGoogle Scholar
  110. 110.
    Laflamme MA, Gold J, Xu C, et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol. 2005;167:663-671.PubMedCrossRefGoogle Scholar
  111. 111.
    Xu T, Rohozinski J, Zhao W, Moorefield EC, Atala A, Yoo JJ. Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng A. 2009;15:95-101.CrossRefGoogle Scholar
  112. 112.
    Ilkhanizadeh S, Teixeira AI, Hermanson O. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials. 2007;28:3936-3943.PubMedCrossRefGoogle Scholar
  113. 113.
    Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials. 2004;25:3707-3715.PubMedCrossRefGoogle Scholar
  114. 114.
    Dai N, Williamson M, Khammo N, Adams E, Coombes A. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials. 2004;25:4263-4271.PubMedCrossRefGoogle Scholar
  115. 115.
    Yang E, Seo Y, Youn H, Lee D, Park S, Park J. Tissue engineered artificial skin composed of dermis and epidermis. Artif Organs. 2000;24:7-17.PubMedCrossRefGoogle Scholar
  116. 116.
    El-Ghalbzouri A, Gibbs S, Lamme E, Van Blitterswijk C, Ponec M. Effect of fibroblasts on epidermal regeneration. Br J Dermatol. 2002;147:230-243.PubMedCrossRefGoogle Scholar
  117. 117.
    Izumi K, Tobita T, Feinberg S. Isolation of human oral keratinocyte progenitor ⁄ stem cells. J Dent Res. 2007;86:341-346.PubMedCrossRefGoogle Scholar
  118. 118.
    Mansbridge J. Tissue-engineered skin substitutes in regenerative medicine. Curr Opin Biotechnol. 2009;20:563-567.PubMedCrossRefGoogle Scholar
  119. 119.
    Mansbridge J. Skin tissue engineering. J Biomater Sci Polym Ed. 2008;19:955-968.PubMedCrossRefGoogle Scholar
  120. 120.
    Gibbs S, van den Hoogenband H, Kirtschig G, et al. Autologous full-thickness skin substitute for healing chronic wounds. Br J Dermatol. 2006;155:267-274.PubMedCrossRefGoogle Scholar
  121. 121.
    Scheller E, Krebsbach P, Kohn D. Tissue engineering: State of the art in oral rehabilitation. J Oral Rehabil. 2009;36:368-389.PubMedCrossRefGoogle Scholar
  122. 122.
    Sauerbier S, Gutwald R, Wiedmann-Al-Ahmad M, Lauer G, Schmelzeisen R. Clin application tissue engineered transplants I mucosa. Clin Oral Implants Res. 2006;17:625-632.PubMedCrossRefGoogle Scholar
  123. 123.
    Song J, Izumi K, Lanigan T, Feinberg S. Development and characterization of a canine oral mucosa equivalent in a serum free environment. J Biomed Mater Res A. 2004;71:143-153.PubMedCrossRefGoogle Scholar
  124. 124.
    Izumi K, Feinberg S, Iida A, Yoshizawa M. Intraoral grafting of an ex vivo produced oral mucosa equivalent: A preliminary report. Int J Oral Maxillofac Surg. 2003;32:188-197.PubMedCrossRefGoogle Scholar
  125. 125.
    Liu J, Lamme E, Steegers-Theunissen R, et al. Cleft palate cells can regenerate a palatal mucosa in vitro. J Dent Res. 2008;87:788-792.PubMedCrossRefGoogle Scholar
  126. 126.
    Crane G, Ishaug S, Mikos A. Bone tissue engineering. Nat Med. 1995;1:1322-1324.PubMedCrossRefGoogle Scholar
  127. 127.
    Freed L, Marquis J, Nohria A, Emmanual J, Mikos A, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 1993;27:11-23.PubMedCrossRefGoogle Scholar
  128. 128.
    Thomopoulos S, Williams G, Gimbel J, Favata M, Soslowsky L. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res. 2003;21:413-419.PubMedCrossRefGoogle Scholar
  129. 129.
    Woo S, Gomez M, Seguchi Y, Endo C, Akeson W. Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res. 1983;1:22-29.PubMedCrossRefGoogle Scholar
  130. 130.
    Kobayashi M, Watanabe N, Oshima Y, Kajikawa Y, Kawata M, Kubo T. The fate of host and graft cells in early healing of bone tunnel after tendon graft. Am J Sports Med. 2005;33:1892-1897.PubMedCrossRefGoogle Scholar
  131. 131.
    Wang I, Shan J, Choi R, et al. Role of osteoblast-fibroblast interactions in the formation of the ligament-to-bone interface. J Orthop Res. 2007;25:1609-1620.PubMedCrossRefGoogle Scholar
  132. 132.
    Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond). 2010;5:469-484.CrossRefGoogle Scholar
  133. 133.
    Ma P. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60:184-198.PubMedCrossRefGoogle Scholar
  134. 134.
    von der Mark K, Park J, Bauer S, Schmuki P. Nanoscale engineering of biomimetic surfaces: Cues from the extracellular matrix. Cell Tissue Res. 2010;339:131-153.PubMedCrossRefGoogle Scholar
  135. 135.
    Kumbar S, James R, Nukavarapu S, Laurencin C. Biomed Mater Electrospun nanofiber scaffolds engineering soft tissues. Biomed Mater. 2008;3:034002.PubMedCrossRefGoogle Scholar
  136. 136.
    Zhang YZ, Su B, Venugopal J, Ramakrishna S, Lim CT. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers. Int J Nanomedicine. 2007;2:623-638.PubMedGoogle Scholar
  137. 137.
    Spalazzi J, Doty S, Moffat K, Levine W, Lu H. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng B Rev. 2006;12:3497-3508.Google Scholar
  138. 138.
    Spalazzi J, Dionisio K, Jiang J, Lu H. Osteoblast and chondrocyte interactions during coculture on scaffolds. IEEE Eng Med Biol Mag. 2003;22:27-34.PubMedCrossRefGoogle Scholar
  139. 139.
    Jiang J, Tang A, Ateshian G, Guo X, Hung C, Lu H. Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng. 2010;38:2183-2196.PubMedCrossRefGoogle Scholar
  140. 140.
    Phelps E, Landázuri N, Thulé P, Taylor W, García A. Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci USA. 2010;107:3323-3328.PubMedCrossRefGoogle Scholar
  141. 141.
    Nomi M, Atala A, Coppi P, Soker S. Principals of neovascularization for tissue engineering. Mol Aspects Med. 2002;23:463-483.PubMedGoogle Scholar
  142. 142.
    Ohashi K, Yokoyama T, Yamato M, et al. Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat Med. 2007;13:880-885.PubMedCrossRefGoogle Scholar
  143. 143.
    Levenberg S, Rouwkema J, Macdonald M, et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 2005;23:879-884.PubMedCrossRefGoogle Scholar
  144. 144.
    Amiel G, Komura M, Shapira O, et al. Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng. 2006;12:2355-2365.PubMedCrossRefGoogle Scholar
  145. 145.
    Fu S, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol. 1997;14:67-116.PubMedCrossRefGoogle Scholar
  146. 146.
    Brushart T, Seiler W. Selective reinnervation of distal motor stumps by peripheral motor axons. Exp Neurol. 1987;97:289-300.PubMedCrossRefGoogle Scholar
  147. 147.
    Ito M, Kudo M. Reinnervation by axon collaterals from single facial motoneurons to multiple targets following axotomy in the adult guinea pig. Acta Anat. 1994;151:124-130.PubMedCrossRefGoogle Scholar
  148. 148.
    Kretschmer T, Antoniadis G, Braun V, Rath S, Richter H. Evaluation of iatrogenic lesions in 722 surgically treated cases of peripheral nerve trauma. J Neurosurg. 2001;94:905-912.PubMedCrossRefGoogle Scholar
  149. 149.
    Lundborg G, Longo F, Varon S. Nerve regeneration model and trophic factors in vivo. Brain Res. 1982;232:157-161.PubMedCrossRefGoogle Scholar
  150. 150.
    Gibson K, Remson L, Smith A, Satterlee N, Strain G, Daniloff J. Comparison of nerve regeneration through different types of neural prostheses. Microsurgery. 1991;12:80-85.PubMedCrossRefGoogle Scholar
  151. 151.
    Kim B, Yoo J, Atala A. Peripheral nerve regeneration using acellular nerve grafts. J Biomed Mater Res A. 2004;68:201-209.PubMedCrossRefGoogle Scholar
  152. 152.
    Inada Y, Hosoi H, Yamashita A, et al. Regeneration of peripheral motor nerve gaps with a polyglycolic acid-collagen tube: Technical case report. Neurosurgery. 2007;61:E1105-E1107.PubMedCrossRefGoogle Scholar
  153. 153.
    Wagner S, Dorchies O, Stoeckel H. Functional maturation of nicotinic acetylcholine receptors as an indicator of, murine muscular differentiation in a new nerve–muscle co-culture, system. Pflugers Arch. 2003;447:14-22.PubMedCrossRefGoogle Scholar
  154. 154.
    Pedrotty D, Koh J, Davis B. Engineering skeletal myoblasts: Roles of three-dimensional culture and electrical stimulation. Am J Physiol Heart Circ Physiol. 2005;288:H1620-H1626.PubMedCrossRefGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  • Tsung-Lin Yang
  • James J. Yoo
  • Maria Z. Siemionow
  • Anthony Atala
    • 1
  1. 1.Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston-SalemUSA

Personalised recommendations