Advertisement

Cellular Therapies in Face Transplantation

  • Maria Z. Siemionow
  • Maria Madajka
  • Joanna Cwykiel
Chapter

Abstract

The main purpose of cellular therapy application in face transplantation is the continuous need to develop new strategies that would eliminate use of toxic immunosuppressive protocols. Cellular therapy in transplantology can significantly benefit allograft survival and shorten healing time. Cells utilized for therapeutic purpose are isolated mostly from bone marrow (BM) and adipose tissues. They have the ability to proliferate and differentiate in the transplanted tissue, and have immunomodulatory activity. Most of the cellular therapies such as regulatory T-cells, dendritic and chimeric cells are still in the experimental stage. Molecular characterization of these cells as well as the mechanism of their participation in allograft acceptance and rejection is not well established and will contribute to the future of modern transplantology.

Keywords

Vascular Endothelial Growth Factor Hepatocyte Growth Factor Cell Fusion Graft Versus Host Disease Cellular Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AC

Adipocyte cell

APC

Antigen-presenting cell

ASCs

Adipose stem cells

BM

Bone marrow

BMDC

Bone marrow derived cell

BMSC

Bone marrow stromal cell

CsA

Cyclosporine A

CTA

Composite tissue allotransplantation

DC

Dendritic cell

FC

Fused cell

GVHD

Graft versus host disease

HGF

Hepatocyte growth factor

IGF-1

Insulin growth factor-1

Il

Interleukin

IFN

Interferon

mAb

monoclonal antibody

MAPK

Mitogen-activated protein kinase

MHC

Major histocompatibility complex

MSC

Mesenchymal stem cell

PEG

Polyethylene glycol

TCR

T-cell receptor

TNF

Tumor necrosis factor

VEGF

Vascular endothelial growth factor

References

  1. 1.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230-247.PubMedCrossRefGoogle Scholar
  2. 2.
    Owen M, Friedenstein AJ. Stromal stem cells: Marrow-derived osteogenic precursors. Ciba Found Symp. 1988;136:42-60.PubMedGoogle Scholar
  3. 3.
    Krebsbach PH, Kuznetsov SA, Bianco P, Robey PG. Bone marrow stromal cells: Characterization and clinical application. Crit Rev Oral Biol Med. 1999;10:165-181.PubMedCrossRefGoogle Scholar
  4. 4.
    Steinhardt Y, Aslan H, Regev E, et al. Maxillofacial-derived stem cells regenerate critical mandibular bone defect. Tissue Eng A. 2008;14:1763-1773.CrossRefGoogle Scholar
  5. 5.
    Mankani MH, Kuznetsov SA, Wolfe RM, Marshall GW, Robey PG. In vivo bone formation by human bone marrow stromal cells: Reconstruction of the mouse calvarium and mandible. Stem Cells. 2006;24:2140-2149.PubMedCrossRefGoogle Scholar
  6. 6.
    Mankani MH, Kuznetsov SA, Shannon B, et al. Canine cranial reconstruction using autologous bone marrow stromal cells. Am J Pathol. 2006;168:542-550.PubMedCrossRefGoogle Scholar
  7. 7.
    Devauchelle B, Badet L, Lengele B, et al. First human face allograft: Early report. Lancet. 2006;368:203-209.PubMedCrossRefGoogle Scholar
  8. 8.
    Hequet O, Morelon E, Bourgeot JP, et al. Allogeneic donor bone marrow cells recovery and infusion after allogeneic face transplantation from the same donor. Bone Marrow Transplant. 2008;41:1059-1061.PubMedCrossRefGoogle Scholar
  9. 9.
    Hausman GJ, Campion DR, McNamara JP, Richardson RL, Martin RJ. Adipose tissue development in the fetal pig after decapitation. J Anim Sci. 1981;53:1634-1644.PubMedGoogle Scholar
  10. 10.
    Caillat-Zucman S, Legendre C, Suberbielle C, et al. Microchimerism frequency two to thirty years after cadaveric kidney transplantation. Hum Immunol. 1994;41:91-95.PubMedCrossRefGoogle Scholar
  11. 11.
    Suberbielle C, Caillat-Zucman S, Legendre C, et al. Peripheral microchimerism in long-term cadaveric-kidney allograft recipients. Lancet. 1994;343:1468-1469.PubMedCrossRefGoogle Scholar
  12. 12.
    Arslan E, Klimczak A, Siemionow M. Chimerism induction in vascularized bone marrow transplants augmented with bone marrow cells. Microsurgery. 2007;27:190-199.PubMedCrossRefGoogle Scholar
  13. 13.
    Klimczak A, Agaoglu G, Carnevale KA, Siemionow M. Applications of bilateral vascularized femoral bone marrow transplantation for chimerism induction across the major histocompatibility (MHC) barrier: part II. Ann Plast Surg. 2006;57:422-430.PubMedCrossRefGoogle Scholar
  14. 14.
    Robey PG, Bianco P. The use of adult stem cells in rebuilding the human face. J Am Dent Assoc. 2006;137:961-972.PubMedGoogle Scholar
  15. 15.
    Hausman GJ. Adipocyte development in subcutaneous tissues of the young rat. Acta Anat (Basel). 1982;112:185-196.CrossRefGoogle Scholar
  16. 16.
    Loffler G, Hauner H. Adipose tissue development: the role of precursor cells and adipogenic factors. Part II: The regulation of the adipogenic conversion by hormones and serum factors. Klin Wochenschr. 1987;65:812-817.PubMedCrossRefGoogle Scholar
  17. 17.
    Hauner H, Loffler G. Adipose tissue development: The role of precursor cells and adipogenic factors. Part I: Adipose tissue development and the role of precursor cells. Klin Wochenschr. 1987;65:803-811.PubMedCrossRefGoogle Scholar
  18. 18.
    Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation. 2004;109:656-663.PubMedCrossRefGoogle Scholar
  19. 19.
    Izadpanah R, Trygg C, Patel B, et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem. 2006;99:1285-1297.PubMedCrossRefGoogle Scholar
  20. 20.
    Keyser KA, Beagles KE, Kiem HP. Comparison of mesenchymal stem cells from different tissues to suppress T-cell activation. Cell Transplant. 2007;16:555-562.PubMedGoogle Scholar
  21. 21.
    Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: Supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008;32:48-55. discussion 56-57.PubMedCrossRefGoogle Scholar
  22. 22.
    Garcia-Olmo D, Herreros D, Pascual I, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: A phase II clinical trial. Dis Colon Rectum. 2009;52:79-86.PubMedGoogle Scholar
  23. 23.
    Madonna R, De Caterina R. Adipose tissue: A new source for cardiovascular repair. J Cardiovasc Med (Hagerstown). 2010;11:71-80.CrossRefGoogle Scholar
  24. 24.
    Jumabay M, Matsumoto T, Yokoyama S, et al. Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. J Mol Cell Cardiol. 2009;47:565-575.PubMedCrossRefGoogle Scholar
  25. 25.
    Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol. 2010;6:195-213.PubMedCrossRefGoogle Scholar
  26. 26.
    Yanez R, Lamana ML, Garcia-Castro J, Colmenero I, Ramirez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24:2582-2591.PubMedCrossRefGoogle Scholar
  27. 27.
    Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009;136:978-989.PubMedCrossRefGoogle Scholar
  28. 28.
    Lu F, Mizuno H, Uysal CA, Cai X, Ogawa R, Hyakusoku H. Improved viability of random pattern skin flaps through the use of adipose-derived stem cells. Plast Reconstr Surg. 2008;121:50-58.PubMedCrossRefGoogle Scholar
  29. 29.
    Coleman SR. Facial augmentation with structural fat grafting. Clin Plast Surg. 2006;33:567-577.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang M, Crisostomo PR, Herring C, Meldrum KK, Meldrum DR. Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol. 2006;291:R880-R884.PubMedCrossRefGoogle Scholar
  31. 31.
    Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 2005;289:F31-F42.PubMedCrossRefGoogle Scholar
  32. 32.
    Agaoglu G, Carnevale KA, Zins JE, Siemionow M. Bilateral vascularized femoral bone transplant: A new model of vascularized bone marrow transplantation in rats, part I. Ann Plast Surg. 2006;56:658-664.PubMedCrossRefGoogle Scholar
  33. 33.
    Demir Y, Ozmen S, Klimczak A, Mukherjee AL, Siemionow M. Tolerance induction in composite facial allograft transplantation in the rat model. Plast Reconstr Surg. 2004;114:1790-1801.PubMedCrossRefGoogle Scholar
  34. 34.
    Ozmen S, Ulusal BG, Ulusal AE, Izycki D, Siemionow M. Composite vascularized skin/bone transplantation models for bone marrow-based tolerance studies. Ann Plast Surg. 2006;56:295-300.PubMedCrossRefGoogle Scholar
  35. 35.
    Siemionow M, Ulusal BG, Ozmen S, Ulusal AE, Ozer K. Composite vascularized skin/bone graft model: A viable source for vascularized bone marrow transplantation. Microsurgery. 2004;24:200-206.PubMedCrossRefGoogle Scholar
  36. 36.
    Ozer K, Gurunluoglu R, Zielinski M, Izycki D, Unsal M, Siemionow M. Extension of composite tissue allograft survival across major histocompatibility barrier under short course of anti-lymphocyte serum and cyclosporine a therapy. J Reconstr Microsurg. 2003;19:249-256.PubMedCrossRefGoogle Scholar
  37. 37.
    Ozer K, Oke R, Gurunluoglu R, et al. Induction of tolerance to hind limb allografts in rats receiving cyclosporine A and antilymphocyte serum: Effect of duration of the treatment. Transplantation. 2003;75:31-36.PubMedCrossRefGoogle Scholar
  38. 38.
    Siemionow MZ, Izycki DM, Zielinski M. Donor-specific tolerance in fully major histocompatibility major histocompatibility complex-mismatched limb allograft transplants under an anti-alphabeta T-cell receptor monoclonal antibody and cyclosporine A protocol. Transplantation. 2003;76:1662-1668.PubMedCrossRefGoogle Scholar
  39. 39.
    Shevach EM. Suppressor T cells: Rebirth, function and homeostasis. Curr Biol. 2000;10:R572-R575.PubMedCrossRefGoogle Scholar
  40. 40.
    Shevach EM. Regulatory T cells in autoimmmunity*. Annu Rev Immunol. 2000;18:423-449.PubMedCrossRefGoogle Scholar
  41. 41.
    Dorsch S, Roser R. Recirculating, suppressor T cells in transplantation tolerance. J Exp Med. 1977;145:1144-1157.PubMedCrossRefGoogle Scholar
  42. 42.
    Zheng SG, Meng L, Wang JH, et al. Transfer of regulatory T cells generated ex vivo modifies graft rejection through induction of tolerogenic CD4+CD25+ cells in the recipient. Int Immunol. 2006;18:279-289.PubMedCrossRefGoogle Scholar
  43. 43.
    Jameson J, Havran WL. Skin gammadelta T-cell functions in homeostasis and wound healing. Immunol Rev. 2007;215:114-122.PubMedCrossRefGoogle Scholar
  44. 44.
    Langenkamp A, Casorati G, Garavaglia C, Dellabona P, Lanzavecchia A, Sallusto F. T cell priming by dendritic cells: thresholds for proliferation, differentiation and death and intraclonal functional diversification. Eur J Immunol. 2002;32:2046-2054.PubMedCrossRefGoogle Scholar
  45. 45.
    Kedl RM, Rees WA, Hildeman DA, et al. T cells compete for access to antigen-bearing antigen-presenting cells. J Exp Med. 2000;192:1105-1113.PubMedCrossRefGoogle Scholar
  46. 46.
    Du JF, Li SY, Bai X. T(reg)-based therapy and mixed chimerism in small intestinal transplantation: does T(reg)+BMT equal intestine allograft tolerance?. Med Hypotheses 2011;76(1):77-78.Google Scholar
  47. 47.
    Maury S, Lemoine FM, Hicheri Y, et al. CD4+CD25+ regulatory T cell depletion improves the graft-versus-tumor effect of donor lymphocytes after allogeneic hematopoietic stem cell transplantation. Sci Transl Med. 2010;2:41-52.Google Scholar
  48. 48.
    Fandrich F. Cell therapy approaches aiming at minimization of immunosuppression in solid organ transplantation. Curr Opin Organ Transplant. 2010;15:703-708.CrossRefGoogle Scholar
  49. 49.
    Barski G, Sorieul S, Cornefert F. “Hybrid” type cells in combined cultures of two different mammalian cell strains. J Natl Cancer Inst. 1961;26:1269-1291.PubMedGoogle Scholar
  50. 50.
    Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002;416:542-545.PubMedCrossRefGoogle Scholar
  51. 51.
    Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature. 2002;416:545-548.PubMedCrossRefGoogle Scholar
  52. 52.
    LaBarge MA, Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell. 2002;111:589-601.PubMedCrossRefGoogle Scholar
  53. 53.
    Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 2003;425:968-973.PubMedCrossRefGoogle Scholar
  54. 54.
    Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003;422:897-901.PubMedCrossRefGoogle Scholar
  55. 55.
    Anderson JM. Multinucleated giant cells. Curr Opin Hematol. 2000;7:40-47.PubMedCrossRefGoogle Scholar
  56. 56.
    Merkel KD, Erdmann JM, McHugh KP, Abu-Amer Y, Ross FP, Teitelbaum SL. Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. Am J Pathol. 1999;154:203-210.PubMedCrossRefGoogle Scholar
  57. 57.
    Siemionow MZ, Demir Y, Sari A, Klimczak A. Facial tissue allograft transplantation. Transplant Proc. 2005;37:201-204.PubMedCrossRefGoogle Scholar
  58. 58.
    Rahhal DN, Xu H, Huang WC, et al. Dissociation between peripheral blood chimerism and tolerance to hindlimb composite tissue transplants: Preferential localization of chimerism in donor bone. Transplantation. 2009;88:773-781.PubMedCrossRefGoogle Scholar
  59. 59.
    Bonde S, Pedram M, Stultz R, Zavazava N. Cell fusion of bone marrow cells and somatic cell reprogramming by embryonic stem cells. FASEB J. 2010;24:364-373.PubMedCrossRefGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  • Maria Z. Siemionow
    • 1
  • Maria Madajka
  • Joanna Cwykiel
  1. 1.Department of Plastic SurgeryCleveland ClinicClevelandUSA

Personalised recommendations