Immunological Aspects of Face Transplantation

  • Aleksandra Klimczak
  • Maria Z. Siemionow


Human facial transplantation is a form of composite tissue allotransplantation (CTA), and since November 2005, it has become a clinical reality. Face transplantation is still considered an experimental procedure in the clinic, and to date, 13 facial transplantations have been performed worldwide. We observe the progress in composite facial tissue allotransplantation, partial or full facial transplantation for severely disfigured patients. Facial CTA involves the transplantation of different type of tissues carrying different functions and immunologic characteristics. Immunogenicity of tissue components of the facial allograft and immunosuppressive strategies that reduce allogenic responses against the graft are discussed in this chapter.


Major Histocompatibility Complex Class Calcineurin Inhibitor Kidney Transplant Recipient Transplantation Tolerance Vessel Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



antigen-presenting cell


anti-thymocyte immunoglobulin


cyclosporine A


composite tissue allotransplantation


cytotoxic T lymphocyte–associated antigen


dermal dendritic cell


graft vs. host disease


intercellular adhesion molecule


The International Registry on Hand and Composite Tissue Transplantation


Langerhans cell


leukocyte function–associated antigen


monoclonal antibody


major histocompatibility complex


mycophenolate mofetil


non-human primates


post-transplant lymphoproliferative disorder




skin-associated lymphoid tissue


  1. 1.
    Devauchelle B, Badet L, Lengele B, et al. First human face allograft: early report. Lancet. 2006;368:203-209.PubMedGoogle Scholar
  2. 2.
    Dubernard JM, Lengele B, Morelon E, et al. Outcomes 18 months after the first human partial face transplantation. N Engl J Med. 2007;357:2451-2460.PubMedGoogle Scholar
  3. 3.
    Guo S, Han Y, Zhang X, et al. Human facial allotransplantation: a 2-year follow-up study. Lancet. 2008;372:631-638.PubMedGoogle Scholar
  4. 4.
    Lantieri L, Meningaud JP, Grimbert P, et al. Repair of the lower and middle parts of the face by composite tissue allotransplantation in a patient with massive plexiform neurofibroma: a 1-year follow-up study. Lancet. 2008;372:639-645.PubMedGoogle Scholar
  5. 5.
    Siemionow M, Papay F, Alam D, et al. Near-total human face transplantation for a severely disfigured patient in the USA. Lancet. 2009;374:203-209.PubMedGoogle Scholar
  6. 6.
    Pomahac B, Lengele B, Ridgway EB, et al. Vascular considerations in composite midfacial allotransplantation. Plast Reconstr Surg. 2010;125:517-522.PubMedGoogle Scholar
  7. 7.
    Siemionow M, Sonmez E. Face as an organ. Ann Plast Surg. 2008;61:345-352.PubMedGoogle Scholar
  8. 8.
    Klimczak A, Siemionow M. Immunology of tissue transplantation. In: Siemionow M, Eisenmann-Klein M, eds. Plastic and Reconstructive Surgery. London: Springer; 2010.Google Scholar
  9. 9.
    Bos JD, Kapsenberg ML. The skin immune system: progress in cutaneous biology. Immunol Today. 1993;14:75-78.PubMedGoogle Scholar
  10. 10.
    Bos JD. Skin Immune System (SIS). 2nd ed. Boca Raton, New York: CRC; 1997.Google Scholar
  11. 11.
    Mathers AR, Larregina AT. Professional antigen-presenting cells of the skin. Immunol Res. 2006;36:127-136.PubMedGoogle Scholar
  12. 12.
    Mutyambizi K, Berger CL, Edelson RL. The balance between immunity and tolerance: the role of Langerhans cells. Cell Mol Life Sci. 2009;66:831-840.PubMedGoogle Scholar
  13. 13.
    Rulifson IC, Szot GL, Palmer E, Bluestone JA. Inability to induce tolerance through direct antigen presentation. Am J Transplant. 2002;2:510-519.PubMedGoogle Scholar
  14. 14.
    Bos JD, Zonneveld I, Das PK, Krieg SR, van der Loos CM, Kapsenberg ML. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J Invest Dermatol. 1987;88:569-573.PubMedGoogle Scholar
  15. 15.
    Grone A. Keratinocytes and cytokines. Vet Immunol Immunopathol. 2002;88:1-12.PubMedGoogle Scholar
  16. 16.
    Black AP, Ardern-Jones MR, Kasprowicz V, et al. Human keratinocyte induction of rapid effector function in antigen-specific memory CD4+ and CD8+ T cells. Eur J Immunol. 2007;37:1485-1493.PubMedGoogle Scholar
  17. 17.
    Wang J, Dong Y, Sun JZ, et al. Donor lymphoid organs are a major site of alloreactive T-cell priming following intestinal transplantation. Am J Transplant. 2006;6:2563-2571.PubMedGoogle Scholar
  18. 18.
    Henri S, Siret C, Machy P, Kissenpfennig A, Malissen B, Leserman L. Mature DC from skin and skin-draining LN retain the ability to acquire and efficiently present targeted antigen. Eur J Immunol. 2007;37:1184-1193.PubMedGoogle Scholar
  19. 19.
    Nagaraju K, Raben N, Merritt G, Loeffler L, Kirk K, Plotz P. A variety of cytokines and immunologically relevant surface molecules are expressed by normal human skeletal muscle cells under proinflammatory stimuli. Clin Exp Immunol. 1998;113:407-414.PubMedGoogle Scholar
  20. 20.
    Wiendl H, Hohlfeld R, Kieseier BC. Immunobiology of muscle: advances in understanding an immunological microenvironment. Trends Immunol. 2005;26:373-380.PubMedGoogle Scholar
  21. 21.
    Carosella ED, Moreau P, Aractingi S, Rouas-Freiss N. HLA-G: a shield against inflammatory aggression. Trends Immunol. 2001;22:553-555.PubMedGoogle Scholar
  22. 22.
    Wiendl H, Hohlfeld R, Kieseier BC. Muscle-derived positive and negative regulators of the immune response. Curr Opin Rheumatol. 2005;17:714-719.PubMedGoogle Scholar
  23. 23.
    Grant GA, Goodkin R, Kliot M. Evaluation and surgical management of peripheral nerve problems. Neurosurgery. 1999;44:825-839. Discussion 39-40.PubMedGoogle Scholar
  24. 24.
    Constable AL, Armati PJ, Toyka KV, Hartung HP. Production of prostanoids by Lewis rat Schwann cells in vitro. Brain Res. 1994;635:75-80.PubMedGoogle Scholar
  25. 25.
    Armati PJ, Pollard JD, Gatenby P. Rat and human Schwann cells in vitro can synthesize and express MHC molecules. Muscle Nerve. 1990;13:106-116.PubMedGoogle Scholar
  26. 26.
    Wohlleben G, Hartung HP, Gold R. Humoral and cellular immune functions of cytokine-treated Schwann cells. Adv Exp Med Biol. 1999;468:151-156.PubMedGoogle Scholar
  27. 27.
    Meyer zu Horste G, Hu W, Hartung HP, Lehmann HC, Kieseier BC. The immunocompetence of Schwann cells. Muscle Nerve. 2008;37:3-13.PubMedGoogle Scholar
  28. 28.
    Campana WM, Li X, Shubayev VI, Angert M, Cai K, Myers RR. Erythropoietin reduces Schwann cell TNF-alpha, Wallerian degeneration and pain-related behaviors after peripheral nerve injury. Eur J Neurosci. 2006;23:617-626.PubMedGoogle Scholar
  29. 29.
    Kieseier BC, Hartung HP, Wiendl H. Immune circuitry in the peripheral nervous system. Curr Opin Neurol. 2006;19:437-445.PubMedGoogle Scholar
  30. 30.
    Kiefer R, Kieseier BC, Stoll G, Hartung HP. The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol. 2001;64:109-127.PubMedGoogle Scholar
  31. 31.
    Siemionow M, Izycki D, Ozer K, Ozmen S, Klimczak A. Role of thymus in operational tolerance induction in limb allograft transplant model. Transplantation. 2006;81:1568-1576.PubMedGoogle Scholar
  32. 32.
    Yazici I, Unal S, Siemionow M. Composite hemiface/calvaria transplantation model in rats. Plast Reconstr Surg. 2006;118:1321-1327.PubMedGoogle Scholar
  33. 33.
    Yazici I, Carnevale K, Klimczak A, Siemionow M. A new rat model of maxilla allotransplantation. Ann Plast Surg. 2007;58:338-344.PubMedGoogle Scholar
  34. 34.
    Kulahci Y, Siemionow M. A new composite hemiface/mandible/tongue transplantation model in rats. Ann Plast Surg. 2010;64:114-121.PubMedGoogle Scholar
  35. 35.
    Pree I, Pilat N, Wekerle T. Recent progress in tolerance induction through mixed chimerism. Int Arch Allergy Immunol. 2007;144:254-266.PubMedGoogle Scholar
  36. 36.
    Murase N, Starzl TE, Tanabe M, et al. Variable chimerism, graft-versus-host disease, and tolerance after different kinds of cell and whole organ transplantation from Lewis to brown Norway rats. Transplantation. 1995;60:158-171.PubMedGoogle Scholar
  37. 37.
    Barratt-Boyes SM, Thomson AW. Dendritic cells: tools and targets for transplant tolerance. Am J Transplant. 2005;5:2807-2813.PubMedGoogle Scholar
  38. 38.
    Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34:1508-1512.PubMedGoogle Scholar
  39. 39.
    Ma W, Pober JS. Human endothelial cells effectively costimulate cytokine production by, but not differentiation of, naive CD4+ T cells. J Immunol. 1998;161:2158-2167.PubMedGoogle Scholar
  40. 40.
    Martinez-Madrigal F, Micheau C. Histology of the major salivary glands. Am J Surg Pathol. 1989;13:879-899.PubMedGoogle Scholar
  41. 41.
    O’Sullivan NL, Skandera CA, Montgomery PC. Lymphocyte lineages at mucosal effector sites: rat salivary glands. J Immunol. 2001;166:5522-5529.PubMedGoogle Scholar
  42. 42.
    Cutler CW, Jotwani R. Dendritic cells at the oral mucosal interface. J Dent Res. 2006;85:678-689.PubMedGoogle Scholar
  43. 43.
    Jotwani R, Cutler CW. Multiple dendritic cell (DC) subpopulations in human gingiva and association of mature DCs with CD4+ T-cells in situ. J Dent Res. 2003;82:736-741.PubMedGoogle Scholar
  44. 44.
    Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 2005;23:275-306.PubMedGoogle Scholar
  45. 45.
    Jotwani R, Palucka AK, Al-Quotub M, et al. Mature dendritic cells infiltrate the T cell-rich region of oral mucosa in chronic periodontitis: in situ, in vivo, and in vitro studies. J Immunol. 2001;167:4693-4700.PubMedGoogle Scholar
  46. 46.
    Monaco AP. Prospects and strategies for clinical tolerance. Transplant Proc. 2004;36:227-231.PubMedGoogle Scholar
  47. 47.
    Siemionow M, Klimczak A. Tolerance and future directions for composite tissue allograft transplants: part II. Plast Reconstr Surg. 2009;123:7e-17e.PubMedGoogle Scholar
  48. 48.
    Zheng XX, Sanchez-Fueyo A, Domenig C, Strom TB. The balance of deletion and regulation in allograft tolerance. Immunol Rev. 2003;196:75-84.PubMedGoogle Scholar
  49. 49.
    Stassen M, Schmitt E, Jonuleit H. Human CD(4+)CD(25+) regulatory T cells and infectious tolerance. Transplantation. 2004;77:S23-S25.PubMedGoogle Scholar
  50. 50.
    Sachs DH. Mixed chimerism as an approach to transplantation tolerance. Clin Immunol. 2000;95:S63-S68.PubMedGoogle Scholar
  51. 51.
    Calne RY. Prope tolerance–the future of organ transplantation from the laboratory to the clinic. Int Immunopharmacol. 2005;5:163-167.PubMedGoogle Scholar
  52. 52.
    Monaco AP. The beginning of clinical tolerance in solid organ allografts. Exp Clin Transplant. 2004;2:153-161.PubMedGoogle Scholar
  53. 53.
    Sprent J, Kishimoto H. The thymus and negative selection. Immunol Rev. 2002;185:126-135.PubMedGoogle Scholar
  54. 54.
    Starzl TE, Demetris AJ, Murase N, Ildstad S, Ricordi C, Trucco M. Cell migration, chimerism, and graft acceptance. Lancet. 1992;339:1579-1582.PubMedGoogle Scholar
  55. 55.
    Remuzzi G. Cellular basis of long-term organ transplant acceptance: pivotal role of intrathymic clonal deletion and thymic dependence of bone marrow microchimerism-associated tolerance. Am J Kidney Dis. 1998;31:197-212.PubMedGoogle Scholar
  56. 56.
    Spitzer TR, Delmonico F, Tolkoff-Rubin N, et al. Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation. 1999;68:480-484.PubMedGoogle Scholar
  57. 57.
    Buhler LH, Spitzer TR, Sykes M, et al. Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease. Transplantation. 2002;74:1405-1409.PubMedGoogle Scholar
  58. 58.
    Fudaba Y, Spitzer TR, Shaffer J, et al. Myeloma responses and tolerance following combined kidney and nonmyeloablative marrow transplantation: in vivo and in vitro analyses. Am J Transplant. 2006;6:2121-2133.PubMedGoogle Scholar
  59. 59.
    Kawai T, Cosimi AB, Spitzer TR, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 2008;358:353-361.PubMedGoogle Scholar
  60. 60.
    Lechler RI, Garden OA, Turka LA. The complementary roles of deletion and regulation in transplantation tolerance. Nat Rev Immunol. 2003;3:147-158.PubMedGoogle Scholar
  61. 61.
    Golshayan D, Pascual M. Tolerance-inducing immunosuppressive strategies in clinical transplantation: an overview. Drugs. 2008;68:2113-2130.PubMedGoogle Scholar
  62. 62.
    Sayegh MH, Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med. 1998;338:1813-1821.PubMedGoogle Scholar
  63. 63.
    Lechler R, Chai JG, Marelli-Berg F, Lombardi G. T-cell anergy and peripheral T-cell tolerance. Philos Trans R Soc Lond B Biol Sci. 2001;356:625-637.PubMedGoogle Scholar
  64. 64.
    Siemionow M, Klimczak A. Basics of immune responses in transplantation in preparation for application of composite tissue allografts in plastic and reconstructive surgery: part I. Plast Reconstr Surg. 2008;121:4e-12e.PubMedGoogle Scholar
  65. 65.
    Petruzzo P, Lanzetta M, Dubernard JM, et al. The international registry on hand and composite tissue transplantation. Transplantation. 2008;86:487-492.PubMedGoogle Scholar
  66. 66.
    Brennan DC, Flavin K, Lowell JA, et al. Leukocyte response to thymoglobulin or atgam for induction immunosuppression in a randomized, double-blind clinical trial in renal transplant recipients. Transplant Proc. 1999;31:16S-18S.PubMedGoogle Scholar
  67. 67.
    Brennan DC, Flavin K, Lowell JA, et al. A randomized, double-blinded comparison of thymoglobulin versus atgam for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation. 1999;67:1011-1018.PubMedGoogle Scholar
  68. 68.
    Calne R, Friend P, Moffatt S, et al. Prope tolerance, perioperative campath 1 H, and low-dose cyclosporin monotherapy in renal allograft recipients. Lancet. 1998;351:1701-1702.PubMedGoogle Scholar
  69. 69.
    Watson CJ, Bradley JA, Friend PJ, et al. Alemtuzumab (CAMPATH 1 H) induction therapy in cadaveric kidney transplantation–efficacy and safety at five years. Am J Transplant. 2005;5:1347-1353.PubMedGoogle Scholar
  70. 70.
    Caillard S, Dharnidharka V, Agodoa L, Bohen E, Abbott K. Posttransplant lymphoproliferative disorders after renal transplantation in the United States in era of modern immunosuppression. Transplantation. 2005;80:1233-1243.PubMedGoogle Scholar
  71. 71.
    Pham PT, Lipshutz GS, Kawahji J, Singer JS, Pham PC. The evolving role of alemtuzumab (Campath-1 H) in renal transplantation. Drug Des Devel Ther. 2009;3:41-49.PubMedGoogle Scholar
  72. 72.
    Benfield MR, Tejani A, Harmon WE, et al. A randomized multicenter trial of OKT3 mAbs induction compared with intravenous cyclosporine in pediatric renal transplantation. Pediatr Transplant. 2005;9:282-292.PubMedGoogle Scholar
  73. 73.
    Bugelski PJ, Achuthanandam R, Capocasale RJ, Treacy G, Bouman-Thio E. Monoclonal antibody-induced cytokine-release syndrome. Expert Rev Clin Immunol. 2009;5:499-521.PubMedGoogle Scholar
  74. 74.
    Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature. 1996;381:434-438.PubMedGoogle Scholar
  75. 75.
    Wekerle T, Sayegh MH, Ito H, et al. Anti-CD154 or CTLA4Ig obviates the need for thymic irradiation in a non-myeloablative conditioning regimen for the induction of mixed hematopoietic chimerism and tolerance. Transplantation. 1999;68:1348-1355.PubMedGoogle Scholar
  76. 76.
    Larsen CP, Pearson TC. The CD40 pathway in allograft rejection, acceptance, and tolerance. Curr Opin Immunol. 1997;9:641-647.PubMedGoogle Scholar
  77. 77.
    Elster EA, Xu H, Tadaki DK, et al. Treatment with the humanized CD154-specific monoclonal antibody, hu5C8, prevents acute rejection of primary skin allografts in nonhuman primates. Transplantation. 2001;72:1473-1478.PubMedGoogle Scholar
  78. 78.
    Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med. 2000;6:114.Google Scholar
  79. 79.
    Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol. 2001;1:220-228.PubMedGoogle Scholar
  80. 80.
    Levisetti MG, Padrid PA, Szot GL, et al. Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation. J Immunol. 1997;159:5187-5191.PubMedGoogle Scholar
  81. 81.
    Kirk AD, Tadaki DK, Celniker A, et al. Induction therapy with monoclonal antibodies specific for CD80 and CD86 delays the onset of acute renal allograft rejection in non-human primates. Transplantation. 2001;72:377-384.PubMedGoogle Scholar
  82. 82.
    Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant. 2005;5:443-453.PubMedGoogle Scholar
  83. 83.
    Vincenti F, Larsen C, Durrbach A, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med. 2005;353:770-781.PubMedGoogle Scholar
  84. 84.
    Larsen CP, Knechtle SJ, Adams A, Pearson T, Kirk AD. A new look at blockade of T-cell costimulation: a therapeutic strategy for long-term maintenance immunosuppression. Am J Transplant. 2006;6:876-883.PubMedGoogle Scholar
  85. 85.
    Adams AB, Shirasugi N, Jones TR, et al. Development of a chimeric anti-CD40 monoclonal antibody that synergizes with LEA29Y to prolong islet allograft survival. J Immunol. 2005;174:542-550.PubMedGoogle Scholar
  86. 86.
    Tang Q, Henriksen KJ, Boden EK, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4 + CD25+ regulatory T cells. J Immunol. 2003;171:3348-3352.PubMedGoogle Scholar
  87. 87.
    Muller YD, Mai G, Morel P, et al. Anti-CD154 mAb and rapamycin induce T regulatory cell mediated tolerance in rat-to-mouse islet transplantation. PLoS ONE. 2010;5:e10352.PubMedGoogle Scholar
  88. 88.
    Vincenti F, de Andres A, Becker T, et al. Interleukin-2 receptor antagonist induction in modern immunosuppression regimens for renal transplant recipients. Transpl Int. 2006;19:446-457.PubMedGoogle Scholar
  89. 89.
    Baan CC, van der Mast BJ, Klepper M, et al. Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells. Transplantation. 2005;80:110-117.PubMedGoogle Scholar
  90. 90.
    Tedesco-Silva H, Mourad G, Kahan BD, et al. FTY720, a novel immunomodulator: efficacy and safety results from the first phase 2A study in de novo renal transplantation. Transplantation. 2005;79:1553-1560.PubMedGoogle Scholar
  91. 91.
    Nicolls MR, Gill RG. LFA-1 (CD11a) as a therapeutic target. Am J Transplant. 2006;6:27-36.PubMedGoogle Scholar
  92. 92.
    Vincenti F, Mendez R, Pescovitz M, et al. A phase I/II randomized open-label multicenter trial of efalizumab, a humanized anti-CD11a, anti-LFA-1 in renal transplantation. Am J Transplant. 2007;7:1770-1777.PubMedGoogle Scholar
  93. 93.
    Abe M, Thomson AW. Influence of immunosuppressive drugs on dendritic cells. Transpl Immunol. 2003;11:357-365.PubMedGoogle Scholar
  94. 94.
    Lee JI, Ganster RW, Geller DA, Burckart GJ, Thomson AW, Lu L. Cyclosporine A inhibits the expression of costimulatory molecules on in vitro-generated dendritic cells: association with reduced nuclear translocation of nuclear factor kappa B. Transplantation. 1999;68:1255-1263.PubMedGoogle Scholar
  95. 95.
    Tajima K, Amakawa R, Ito T, Miyaji M, Takebayashi M, Fukuhara S. Immunomodulatory effects of cyclosporin A on human peripheral blood dendritic cell subsets. Immunology. 2003;108:321-328.PubMedGoogle Scholar
  96. 96.
    Teunissen MB, De Jager MH, Kapsenberg ML, Bos JD. Inhibitory effect of cyclosporin A on antigen and alloantigen presenting capacity of human epidermal Langerhans cells. Br J Dermatol. 1991;125:309-316.PubMedGoogle Scholar
  97. 97.
    Flanagan WM, Corthesy B, Bram RJ, Crabtree GR. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature. 1991;352:803-807.PubMedGoogle Scholar
  98. 98.
    Matsue H, Yang C, Matsue K, Edelbaum D, Mummert M, Takashima A. Contrasting impacts of immunosuppressive agents (rapamycin, FK506, cyclosporin A, and dexamethasone) on bidirectional dendritic cell-T cell interaction during antigen presentation. J Immunol. 2002;169:3555-3564.PubMedGoogle Scholar
  99. 99.
    Salgado CG, Nakamura K, Sugaya M, et al. Differential effects of cytokines and immunosuppressive drugs on CD40, B7-1, and B7-2 expression on purified epidermal Langerhans cells1. J Invest Dermatol. 1999;113:1021-1027.PubMedGoogle Scholar
  100. 100.
    Wollenberg A, Sharma S, von Bubnoff D, Geiger E, Haberstok J, Bieber T. Topical tacrolimus (FK506) leads to profound phenotypic and functional alterations of epidermal antigen-presenting dendritic cells in atopic dermatitis. J Allergy Clin Immunol. 2001;107:519-525.PubMedGoogle Scholar
  101. 101.
    Homey B, Assmann T, Vohr HW, et al. Topical FK506 suppresses cytokine and costimulatory molecule expression in epidermal and local draining lymph node cells during primary skin immune responses. J Immunol. 1998;160:5331-5340.PubMedGoogle Scholar
  102. 102.
    Liu HN, Wong CK. In vitro immunosuppressive effects of methotrexate and azathioprine on Langerhans cells. Arch Dermatol Res. 1997;289:94-97.PubMedGoogle Scholar
  103. 103.
    Fulton B, Markham A. Mycophenolate mofetil. A review of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in renal transplantation. Drugs. 1996;51:278-298.PubMedGoogle Scholar
  104. 104.
    Mehling A, Grabbe S, Voskort M, Schwarz T, Luger TA, Beissert S. Mycophenolate mofetil impairs the maturation and function of murine dendritic cells. J Immunol. 2000;165:2374-2381.PubMedGoogle Scholar
  105. 105.
    Gregori S, Casorati M, Amuchastegui S, Smiroldo S, Davalli AM, Adorini L. Regulatory T cells induced by 1 alpha, 25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol. 2001;167:1945-1953.PubMedGoogle Scholar
  106. 106.
    Sehgal SN. Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem. 1998;31:335-340.PubMedGoogle Scholar
  107. 107.
    Wells AD, Li XC, Li Y, et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med. 1999;5:1303-1307.PubMedGoogle Scholar
  108. 108.
    Segundo DS, Ruiz JC, Izquierdo M, et al. Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients. Transplantation. 2006;82:550-557.PubMedGoogle Scholar
  109. 109.
    Monti P, Mercalli A, Leone BE, Valerio DC, Allavena P, Piemonti L. Rapamycin impairs antigen uptake of human dendritic cells. Transplantation. 2003;75:137-145.PubMedGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  1. 1.Department of Plastic SurgeryCleveland ClinicClevelandUSA

Personalised recommendations