Skip to main content

Methods of Assessment of Cortical Plasticity in Patients Following Amputation, Replantation, and Composite Tissue Allograft Transplantation

  • Chapter
  • First Online:
The Know-How of Face Transplantation

Abstract

The brain is constantly adapting to new inputs from the environment. New noninvasive techniques are available to scrupulously study cortical plasticity. Several studies have proven that changes in neural pathways occur due to denervation from injury such as amputation. Changes that occur rapidly are likely due to unmasking of established synapses that are latent, while changes that occur over long periods of time are more likely due to establishment of new neural connections. Cortical reorganization that occurs from traumatic amputation has been shown to be reversible with replantation and transplantation. With the new field of composite tissue transplantation, such as hand or face, it is critical to be aware of these changes in order to choose potential patients and to modify their rehabilitation based on our understanding of the cortical reorganization that occurs over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BOLD:

Blood oxygenation level dependent

fMRI:

Functional Magnetic Resonance Imaging

GABA:

Gamma-aminobutyric acid

Hb:

Hemoglobin

HbO2 :

Oxygenated hemoglobin

ICF:

Intracortical facilitation

MEP:

Motor-evoked potentials

MT:

Motor threshold

NMDA:

N-methyl-d-aspartate

PMC:

Premotor cortex supplementary motor area (SMA)

SMA:

Supplementary motor area

SICI:

Short interval intracortical inhibition

TMS:

Transcranial magnetic stimulation

References

  1. Ramachandran VS, Stewart M, Rogers-Ramachandran DC. Perceptual correlates of massive cortical reorganization. NeuroReport. 1992;3:583-586.

    Article  CAS  Google Scholar 

  2. Seong-Gi Kim, Bandettini Peter. Principles of functional MRI. In: Faro Scott, Mohammed Feroze, eds. Functional MRI: Basic Principles and Clinical Applications. New York: Springer; 2006:3-23.

    Google Scholar 

  3. Stippich Christopher. Introduction to presurgical functional MRI. In: Baert AL, Knauth M, Sator K, eds. Medical Radiology Diagnostic Imaging: Clinical Functional MRI. Berlin: Springer; 2007:1-7.

    Chapter  Google Scholar 

  4. Ogawa S, Lee TM, Kay AS, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87:9868-9872.

    Article  CAS  Google Scholar 

  5. Cohen MS, Bookheimer SY. Localization of brain function using magnetic resonance imaging. Trends Neurosci. 1994;17:268-277.

    Article  CAS  Google Scholar 

  6. Barker Anthony T. The history and basic principles of magnetic nerve stimulation. In: Pascual-Leone A, Davey NJ, Rothwell J, Wasserman EM, Puri BK, eds. Handbook of Transcranial Magnetic Stimulation. New York: Arnold; 2002:3-17.

    Google Scholar 

  7. Wassermann EM, McShane LM, Hallet M, Cohen LG. Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol. 1992;85:1-8.

    Article  CAS  Google Scholar 

  8. Cohen LG, Mano Y. Neuroplasticity and transcranial magnetic stimulation. In: Pascual-Leone A, Davey NJ, Rothwell J, Wasserman EM, Puri BK, eds. Handbook of Transcranial Magnetic Stimulation. New York: Arnold; 2002:346-357.

    Google Scholar 

  9. Borsook D, Becerra L, Fishman S, et al. Acute plasticity in human somatosensory cortex following amputation. NeuroReport. 1998;9:1013-1017.

    Article  CAS  Google Scholar 

  10. Cruz VT, Nunes B, Reis AM, Pereira JR. Cortical remapping in amputees and dyslemic patients: a functional MRI study. NeuroRehabilitation. 2003;18:299-305.

    PubMed  Google Scholar 

  11. Cohen LG, Bandinelli S, Findley TW, Hallet M. Motor reorganization after upper limb amputation in man. Brain. 1991;114:615-627. Pt 1B.

    Article  Google Scholar 

  12. Schwenkreis P, Witscher K, Janssen F, et al. Changes of cortical excitability in patients with upper limb amputation. Neurosci Lett. 2000;293:143-146.

    Article  CAS  Google Scholar 

  13. Jacobs KM, Donoghue JP. Reshaping the cortical motor map by unmasking latent intracortical connections. Science. 1991;251:944-947.

    Article  CAS  Google Scholar 

  14. Garraghty PE, Muja N. NMDA receptors and plasticity in adult primate somatosensory cortex. J Comp Neurol. 1996;367:319-336.

    Article  CAS  Google Scholar 

  15. Bjorkman A, Waites A, Rosen B, Lundborg G, Larsson EM. Cortical sensory and motor response in a patient whose hand has been replanted: one-year follow up with functional magnetic resonance imaging. Scand J Plast Reconstr Surg Hand Surg. 2007;41:70-76.

    Article  Google Scholar 

  16. Roricht S, Machetanz J, Niehaus L, Biemer E, Meyer BU. Reorganization of human motor cortex after hand replantation. Ann Neurol. 2001;50:240-249.

    Article  CAS  Google Scholar 

  17. Piza-Katzer H, Brenneis C, Loscher WN, et al. Cortical motor activation patterns after hand transplant and replantation. Acta Neurochir Suppl. 2007;100:113-115.

    Article  CAS  Google Scholar 

  18. Giraux P, Sirigu A, Schneider F, Dubernard JM. Cortical reorganization in motor cortex after graft of both hands. Nat Neurosci. 2001;4:691-692.

    Article  CAS  Google Scholar 

  19. Sanes JN, Suner S, Donoghue JP. Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Long term patterns of reorganization following motor or mixed peripheral nerve lesions. Exp Brain Res. 1990;79:479-491.

    Article  CAS  Google Scholar 

  20. Donoghue JP, Suner S, Sanes JN. Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Exp Brain Res. 1990;79:492-503.

    Article  CAS  Google Scholar 

  21. Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, Mishkin M. Massive cortical reorganization after sensory deafferentation in adult macaques. Science. 1991;252:1857-1860.

    Article  CAS  Google Scholar 

  22. Yang TT, Gallen CC, Ramachandran VS, Cobb S, Schwartz BJ, Bloom FE. Noninvasive detection of cerebral plasticity in adult human somatosensory cortex. NeuroReport. 1994;5:701-704.

    Article  CAS  Google Scholar 

  23. Rijntjes M, Tegenthoff M, Liepert J, et al. Cortical reorganization in patients with facial palsy. Ann Neurol. 1997;41:621-630.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Mendiola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Mendiola, A., Siemionow, M.Z. (2011). Methods of Assessment of Cortical Plasticity in Patients Following Amputation, Replantation, and Composite Tissue Allograft Transplantation. In: Siemionow, M. (eds) The Know-How of Face Transplantation. Springer, London. https://doi.org/10.1007/978-0-85729-253-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-253-7_22

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-252-0

  • Online ISBN: 978-0-85729-253-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics