Functional EEG Assessment of Face Transplantation

  • Vlodek Siemionow


Extensive traumatic loss of functional and composite structures of the face (skin, muscles, nerves, and bones) results in significant reorganization of the primary motor (M1) and somatosensory (S1) cortex. The first near-total US face transplant offers a unique opportunity to study the relearning process of integrating cortical representations of motor and sensory functions which were lost over a 5-year period following the patient’s initial trauma. Using the functional EEG technique, we have found that trauma-induced cortical reorganization and associated loss of functions can gradually be reversed following face transplantation. The relearning of lost facial function governed by the somatosensory cortex confirms cortical plasticity and adaptation to the newly acquired functions. The restored functions in the transplant patient were found in the same areas of the motor cortex as in normal controls.


Motor Task Sensorimotor Cortex Tactile Stimulation Facial Function Facial Animation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Analysis of Variance


Brain Electromagnetic Source Analysis


Central Nervous System








Fast Fourier Transform


Functional Magnetic Resonance Imaging


Institutional Review Board


Magnetic Encephalography


Motor-Related Cortical Potentials


Primary Motor Cortex


Motor-Evoked Potentials


Negative Potential


Positron Emission Tomography


Primary Somatosensory Cortex


Somatosensory-Evoked Magnetic Fields


Somatosensory-Evoked Potentials


Transcranial Magnetic Stimulation


  1. 1.
    Gander B, Brown CS, Vasilic D, et al. A new frontier in transplant and reconstructive surgery. Transpl Int. 2006;19:868-880.PubMedCrossRefGoogle Scholar
  2. 2.
    Cavadas PC, Landin L, Ibañez J. Bilateral hand transplantation: result at 20 months. J Hand Surg Eur. 2009;34:434-443.Google Scholar
  3. 3.
    Vargas CD, Aballe A, Rodrigues EC, et al. Re-emergence of hand-muscle representations in human motor cortex after hand allograft. PNAS. 2009;106(17):7197-7202.PubMedCrossRefGoogle Scholar
  4. 4.
    Giraux P, Sirigu A, Fabien S, Dubernard J-M. Cortical reorganization in motor cortex after graft of both hands. Nat Neurosci. 2001;4:691-692.PubMedCrossRefGoogle Scholar
  5. 5.
    Lanzetta M, Pozzo M, Bottin A, Marletti R, Farina D. Reinervation of motor units in intrinsic muscles of transplanted hand. Neurosci Lett. 2005;373:138-143.PubMedCrossRefGoogle Scholar
  6. 6.
    Siemionow M. Sonmez E Face as an organ. Ann Plast Surg. 2008;61:345-352.PubMedCrossRefGoogle Scholar
  7. 7.
    Landin L, Cadavas PC. Thy mystacial pad flap: a functional facial flap in rats. Ann Plast Surg. 2005;56:107-108.CrossRefGoogle Scholar
  8. 8.
    Landin L, Cavadas PC, Gonzalez E, Rodriguez JC, Caballero A. Functional outcome after facial allograft transplantation in rats. J Plast Reconstr Aesthet Surg. 2008;61:1034-1043.PubMedCrossRefGoogle Scholar
  9. 9.
    Landin L, Cavadas PC, Gonzalez E, Caballero-Hidalgo A, Rodriguez-Perez JC. Sensorimotor recovery after partial facial (mystacial pad) transplantation in rats. Ann Plast Surg. 2009;63:428-435.PubMedCrossRefGoogle Scholar
  10. 10.
    Zor F, Bozkurt M, Nair D, Siemionow M. A new composite midface allotransplantation model with sensory and motor reinnervation. Transpl Int. 2009;23(6):649-656. Epub 2009 Dec 21.PubMedCrossRefGoogle Scholar
  11. 11.
    Washington KM, Solari MG, Sacks JM, et al. A model for functional recovery and cortical reintegration after hemifacial composite tissue allotransplantation. Plast Reconstr Surg. 2009;123(2 Suppl):26S-33S.PubMedCrossRefGoogle Scholar
  12. 12.
    Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60:389-433.CrossRefGoogle Scholar
  13. 13.
    Nguyen BT, Tran TD, Hoshiyama M, Inui K, Kakigi R. Face representation in the human primary somatosensory cortex. Neurosci Res. 2004;50:227-232.PubMedCrossRefGoogle Scholar
  14. 14.
    Dubernard J-M, Lengelé B, Morelon E, et al. Outcomes 18 months after the first human partial face transplantation. N Engl J Med. 2007;357(24):2451-2460.PubMedCrossRefGoogle Scholar
  15. 15.
    Devauchelle B, Badet L, Lengelé B, et al. First human face allograft: early report. Lancet. 2006;368:203-209.PubMedCrossRefGoogle Scholar
  16. 16.
    Lantieri L, Meningaud JP, Grimbert P, et al. Repair of the lower and middle parts of the face by composite tissue allotransplantation in a patient with massive plexiform neurofibroma: a 1-year follow-up study. Lancet. 2008;372:639-645.PubMedCrossRefGoogle Scholar
  17. 17.
    Hari R, Karhu J, Hamalainen M, et al. Functional organization of the human first and secondsomatosensory cortices: a neuromagnetic study. Eur J Neurosci. 1993;5:724-734.PubMedCrossRefGoogle Scholar
  18. 18.
    Kounios J, Fleck JI, Green DL, et al. The origins of insight in resting-state brain activity. Neuropsychologia. 2008;46:281-291.PubMedCrossRefGoogle Scholar
  19. 19.
    Siemionow M, Papay F, Daniel A, et al. Near-total human face transplantation for a severely disfigured patient in the USA. Lancet. 2009;374:203-209.PubMedCrossRefGoogle Scholar
  20. 20.
    Electrical Geodesics Incorporated (EGI). 200 Technical Manual. Eugene Oregon: Electrical Geodesics, Inc; 2006.Google Scholar
  21. 21.
    Siemionow V, Fang Y, Calabrese L, Sahgal V, Yue GH. Altered central nervous system signal during motor performance in chronic fatigue syndrome. Clin Neurophysiol. 2004;115:2372-2381.PubMedGoogle Scholar
  22. 22.
    Ranganathan VK, Siemionow V, Liu JZ, Sahgal V, Yue GH. From mental power to muscle power-gaining strength by using the mind. Neuropsychologia. 2004;42:944-956.PubMedCrossRefGoogle Scholar
  23. 23.
    Berg P, Scherg M. A fast method for forward computation of multiple-shell spherical head models. Electroencephalogr Clin Neurophysiol. 1994;90:58-64.PubMedCrossRefGoogle Scholar
  24. 24.
    Hallet M. Movement-related cortical potentials. Electromyogr Cllin Neurophysiol. 1994;34:5-13.Google Scholar
  25. 25.
    Siemionow V, Yue GH, Ranganathan VK, Liu JZ, Sahgal V. Relationship between motor activity-related cortical potential and voluntary muscle activation. Exp Brain Res. 2000;133:303-311.PubMedCrossRefGoogle Scholar
  26. 26.
    Jasper HH. Report of the committee on methods of clinical examination in electroencephalography. Appendix: The ten twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol. 1958;10:370-375.CrossRefGoogle Scholar
  27. 27.
    Penfield W, Rasmussen T. The Cerebral Cortex of Man A Clinical Study of Localization of Function. New York: McMillan Press; 1950.Google Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  1. 1.Department of Plastic SurgeryLerner Research Institute, Cleveland ClinicClevelandUSA

Personalised recommendations