Brain Plasticity After Hand and Face Allotransplantation

  • Claudia D. Vargas
  • Angela Sirigu


The traumatic amputation of a hand is devastating because instantly dispossesses an individual from extremely well-developed upper limb sensory functions as well as the capacity to perform precision movements. Likewise, the face can be considered as a sophisticated organ of expressivity and communication, carrying important symbolic, social, and psychological significance. Thus, severe hand or facial traumatic loss can be lifelong impairing and strongly dysfunctional. Recent advances in the domain of transplantation are endowing severely deformed and/or functionally impaired patients with the possibility of receiving composite tissue allografts (CTA). The hand and face allograft are examples of CTA transplantation that contain skin, subcutaneous tissues, muscles, vessels, and nerves. Changes in the cortical motor representations induced by traumatic hand amputation have been shown to be overturned after hand allograft. Based on principles of plasticity underlying hand amputation and allograft, we will herein discuss hypotheses and set predictions regarding cortical changes after limb and face allograft.


Transcranial Magnetic Stimulation Consultation Ethic Phantom Limb Pain Unit Train Sensorimotor Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Functional Magnetic Resonance Imaging


Transcranial Magnetic Stimulation


  1. 1.
    Hebb DO. The Organization of Behavior. New York: John Wiley & Sons, Inc.; 1949.Google Scholar
  2. 2.
    Kaas JH, Merzenich MM, Killackey HP. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci. 1983;6:325-356.PubMedCrossRefGoogle Scholar
  3. 3.
    Sanes JN, Suner S, Donoghue JP. Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Exp Brain Res. 1990;79:479-491.PubMedCrossRefGoogle Scholar
  4. 4.
    Pons TP, Garraghty PE, Ommaya AK, et al. Massive cortical reorganization after sensory deafferentation in adult macaques. Science. 1991;252:1857-1860.PubMedCrossRefGoogle Scholar
  5. 5.
    Recanzone GH, Merzenich MM, Jenkins WM, et al. Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J Neurophysiol. 1992;67:1031-1056.PubMedGoogle Scholar
  6. 6.
    Buonomano DV, Merzenich MM. Cortical plasticity: from synapses to maps. Ann Rev Neurosci. 1998;21:149-186.PubMedCrossRefGoogle Scholar
  7. 7.
    Wall JT, Xu J, Wang X. Human brain plasticity: an emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res Rev. 2002;39:181-215.PubMedCrossRefGoogle Scholar
  8. 8.
    Florence SL, Taub HB, Kaas JH. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science. 1998;282:1117-1121.PubMedCrossRefGoogle Scholar
  9. 9.
    Merzenich MM, Kaas JH, Wall J, et al. Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience. 1983;8:33-55.PubMedCrossRefGoogle Scholar
  10. 10.
    Wall JT, Kaas JH, Sur M, et al. Functional reorganization in somatosensory cortical areas 3b and 1 of adult monkeys after median nerve repair: possible relationships to sensory recovery in humans. J Neurosci. 1986;6:218-233.PubMedGoogle Scholar
  11. 11.
    Cohen LG, Bandinelli S, Findley TW, et al. Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain. 1991;114:615-627.PubMedCrossRefGoogle Scholar
  12. 12.
    Kew JJ, Ridding MC, Rothwell JC, et al. Reorganization of cortical blood flow and transcranial magnetic stimulation maps in human subjects after upper limb amputation. J Neurophysiol. 1994;72:2517-2524.PubMedGoogle Scholar
  13. 13.
    Florence SL, Kaas JH. Large-scale reorganization at multiple levels of the somatosensory pathway follows therapeutic amputation of the hand in monkeys. J Neurosci. 1995;15:8083-8095.PubMedGoogle Scholar
  14. 14.
    Flor H, Elbert T, Knecht S, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;8(375):482-484.CrossRefGoogle Scholar
  15. 15.
    Flor H, Elbert T, Muhlnickel W, et al. Cortical reorganization and phantom phenomena in congenital and traumatic upper-extremity amputees. Exp Brain Res. 1998;119:205-212.PubMedCrossRefGoogle Scholar
  16. 16.
    Roricht S, Meyer BU, Niehaus L, et al. Long-term reorganization of motor cortex outputs after arm amputation. Neurology. 1999;53:106-111.PubMedGoogle Scholar
  17. 17.
    Wu CW, Kaas JH. Reorganization in primary motor cortex of primates with long-standing therapeutic amputations. J Neurosci. 1999;19:7679-7697.PubMedGoogle Scholar
  18. 18.
    Lundborg G. Nerve injury and repair: a challenge to the plastic brain. J Peripher Nerv Syst. 2003;8:209-226.PubMedCrossRefGoogle Scholar
  19. 19.
    Giraux P, Sirigu A, Schneider F, et al. Cortical reorganization in motor cortex after graft of both hands. Nat Neurosci. 2001;4:691-692.PubMedCrossRefGoogle Scholar
  20. 20.
    Vargas CD, Aballéa A, Rodrigues EC, et al. Re-emergence of hand-muscle representations in human motor cortex after hand allograft. Proc Natl Acad Sci USA. 2009;28(106):7197-7202.CrossRefGoogle Scholar
  21. 21.
    Ramachandran VS, Hirstein W. The perception of phantom limbs. The D.O. Hebb lecture. Brain. 1998;121:1603-1630.PubMedCrossRefGoogle Scholar
  22. 22.
    Flor H, Nikolajsen L, Staehelin Jensen T. Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci. 2006;7:873-881.PubMedCrossRefGoogle Scholar
  23. 23.
    Ramachandran VS. Behavioral and MEG correlates of neural plasticity in the adult human brain. Proc Natl Acad Sci USA. 1993;90:10413-10420.PubMedCrossRefGoogle Scholar
  24. 24.
    Borsook D, Becerra L, Fishman S, et al. Acute plasticity in the human somatosensory cortex following amputation. NeuroReport. 1998;9:1013-1017.PubMedCrossRefGoogle Scholar
  25. 25.
    Lotze M, Grodd W, Birbaumer N, et al. Does use of a myoelectric prosthesis prevent cortical reorganization and phantom limb pain? Nat Neurosci. 1999;2:501-502.PubMedCrossRefGoogle Scholar
  26. 26.
    Ramachandran VS, Stewart M, Rogers-Ramachandran DC. Perceptual correlates of massive cortical reorganization. NeuroReport. 1992;3:583-586.PubMedCrossRefGoogle Scholar
  27. 27.
    Dettmers C, Liepert J, Adler T, et al. Abnormal motor cortex organization contralateral to early upper limb amputation in humans. Neurosci Lett. 1999;263:41-46.PubMedCrossRefGoogle Scholar
  28. 28.
    Ojemann JG, Silbergeld DL. Cortical stimulation mapping of phantom limb rolandic cortex. Case report. J Neurosurg. 1995;82:641-644.PubMedCrossRefGoogle Scholar
  29. 29.
    Mercier C, Reilly KT, Vargas CD, et al. Mapping phantom movement representations in the motor cortex of amputees. Brain. 2006;129:2202-2210.PubMedCrossRefGoogle Scholar
  30. 30.
    Karl A, Birbaumer N, Lutzenberger W, et al. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci. 2001;21:3609-3618.PubMedGoogle Scholar
  31. 31.
    Lotze M, Flor H, Grodd W, et al. Phantom movements and pain. An fMRI study in upper limb amputees. Brain. 2001;124:2268-2277.PubMedCrossRefGoogle Scholar
  32. 32.
    Huntley GW. Correlation between patterns of horizontal connectivity and the extent of short-term representational plasticity in rat motor cortex. Cereb Cortex. 1997;7:143-156.PubMedCrossRefGoogle Scholar
  33. 33.
    Chen R, Corwell B, Yaseen Z, et al. Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci. 1998;18:3443-3450.PubMedGoogle Scholar
  34. 34.
    Schwenkreis P, Witscher K, Janssen F, et al. Changes of cortical excitability in patients with upper limb amputation. Neurosci Lett. 2000;293:143-146.PubMedCrossRefGoogle Scholar
  35. 35.
    Brenneis C, Loscher WN, Egger KE, et al. Cortical motor activation patterns following hand transplantation and replantation. J Hand Surg Br. 2005;30:530-533.PubMedCrossRefGoogle Scholar
  36. 36.
    Roricht S, Machetanz J, Irlbacher K, et al. Reorganization of human motor cortex after hand replantation. Ann Neurol. 2001;50:240-249.PubMedCrossRefGoogle Scholar
  37. 37.
    Neugroschl C, Denolin V, Schuind F, et al. Functional MRI activation of somatosensory and motor cortices in a hand-grafted patient with early clinical sensorimotor recovery. Eur Radiol. 2005;15:1806-1814.PubMedCrossRefGoogle Scholar
  38. 38.
    Farne A, Roy AC, Giraux P, et al. Face or hand, not both: perceptual correlates of reafferentation in a former amputee. Curr Biol. 2002;12:1342-1346.PubMedCrossRefGoogle Scholar
  39. 39.
    Kuiken TA, Marasco PD, Lock BA, et al. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc Natl Acad Sci USA. 2007;104:20061-20066.PubMedCrossRefGoogle Scholar
  40. 40.
    Wu CW, Kaas JH. Spinal cord atrophy and reorganization of motoneuron connections following long-standing limb loss in primates. Neuron. 2000;28:967-978.PubMedCrossRefGoogle Scholar
  41. 41.
    Robinson GA, Madison RD. Motor neurons can preferentially reinnervate cutaneous pathways. Exp Neurol. 2004;190:407-413.PubMedCrossRefGoogle Scholar
  42. 42.
    Nguyen QT, Sanes JR, Lichtman JW. Pre-existing pathways promote precise projection patterns. Nat Neurosci. 2002;5:861-867.PubMedCrossRefGoogle Scholar
  43. 43.
    Lanzetta M, Pozzo M, Bottin A, et al. Reinnervation of motor units in intrinsic muscles of a transplanted hand. Neurosci Lett. 2005;373:138-143.PubMedCrossRefGoogle Scholar
  44. 44.
    Schneeberger S, Ninkovic M, Piza-Katzer H, et al. Status 5 years after bilateral hand transplantation. Am J Transplant. 2006;6:834-841.PubMedCrossRefGoogle Scholar
  45. 45.
    Reilly KT, Mercier C, Schieber MH, et al. Persistent hand motor commands in the amputees’ brain. Brain. 2006;129:2211-2223.PubMedCrossRefGoogle Scholar
  46. 46.
    Reilly KT, Sirigu A. The motor cortex and its role in phantom limb phenomena. Neuroscientist. 2008;14:195-202.PubMedCrossRefGoogle Scholar
  47. 47.
    Petruzzo P, Badet L, Gazarian A, et al. Bilateral hand transplantation: six years after the first case. Am J Transplant. 2006;6:1718-1724.PubMedCrossRefGoogle Scholar
  48. 48.
    Siemionow M, Gozel-Ulusal B, Engin UA, et al. Functional tolerance following face transplantation in the rat. Transplantation. 2003;75:1607-1609.PubMedCrossRefGoogle Scholar
  49. 49.
    Dubernard JM, Owen E, Herzberg G, et al. Human hand allograft: report on first 6 months. Lancet. 1999;353:1315-1320.PubMedCrossRefGoogle Scholar
  50. 50.
    Agich GJ, Siemionow MJ. Until they have faces: the ethics of facial allograft transplantation. Med Ethics. 2005;31:707-709.CrossRefGoogle Scholar
  51. 51.
    Devauchelle B, Badet L, Lengelé B, et al. First human face allograft: early report. Lancet. 2006;368:203-209.PubMedCrossRefGoogle Scholar
  52. 52.
    Siemionow M, Gordon CR. Overview of guidelines for establishing a face transplant program: a work in progress. Am J Transplant. 2010;10:1290-1296.PubMedCrossRefGoogle Scholar
  53. 53.
    Dubernard JM, Lengelé B, Morelon E, et al. Outcomes 18 months after the first human partial face transplantation. N Engl J Med. 2007;357:2451-2460.PubMedCrossRefGoogle Scholar
  54. 54.
    Guo S, Han Y, Zhang X, et al. Human facial allotransplantation: a 2-year follow-up study. Lancet. 2008;372:631-638.PubMedCrossRefGoogle Scholar
  55. 55.
    Lantieri L, Meningaud JP, Grimbert P, et al. Repair of the lower and middle parts of the face by composite tissue allotransplantation in a patient with massive plexiform neurofibroma: a 1-year follow-up study. Lancet. 2008;372:639-645.PubMedCrossRefGoogle Scholar
  56. 56.
    Siemionow M, Papay F, Alam D, et al. Near-total human face transplantation for a severely disfigured patient in the USA. Lancet. 2009;374:203-209.PubMedCrossRefGoogle Scholar
  57. 57.
    Siemionow M, Sonmez E. Face as an organ. Ann Plast Surg. 2008;61:345-352.PubMedCrossRefGoogle Scholar
  58. 58.
    Frith C. Role of facial expressions in social interactions. Philos Trans R Soc Lond B Biol Sci. 2009;364:3453-3458.PubMedCrossRefGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  1. 1.Center for Cognitive Neuroscience, CNRSBronFrance

Personalised recommendations