Pure tin is currently the most widely employed lead-free finish for plating of component terminals despite its propensity to spontaneous whisker formation. Whiskers are filamentary crystals, conductive and mechanically strong, measuring up to a few millimetres, though the common variety observed on matt tin finish on copper substrate was hardly ever reported to exceed 0.5 mm. A positive stress gradient within the Sn layer, that is either a lowering compressive or an increasing tensile stress towards the root of a whisker, is reputed as the driving force for whisker formation. The formation of whisker is a major reliability concern for the electronic industry. Whisker-related failures in electric and electronic hardware have been reported since the 1940, and the failure risk cannot be overlooked especially in modern electronic systems. Understanding the tin whisker phenomenon and further developing mitigation strategies and test methods for evaluating whisker performance are all important tasks to be fulfilled in the future.


Intermetallic Layer Whisker Growth Whisker Formation Conformal Coating Mitigation Practice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am indebted to Pascal Oberndorff for his criticism and remarks to the draft manuscript. I am especially grateful to Jacob Klerk for his considerate encouragement during the short life of the Elfnet Tin Whisker Group.


  1. 1.
    Galyon GT (2005) Annotated tin whisker bibliography and anthology. IEEE Trans Electron Pack Manuf 28:94–122CrossRefGoogle Scholar
  2. 2.
    Leidecker H and Brusse J (2006) Tin whiskers: a history of documented electrical system failures. Technical presentation to Space Shuttle Program Office. Accessed 30 Sept 2009
  3. 3.
    Arnold SM (1956) The growth and properties of metal whiskers. Technical proceedings of the 43rd annual convention of the American electroplaters society, pp 26–31Google Scholar
  4. 4.
    Dunn BD (1987) A laboratory study of tin whiskers growth. ESA Sci Tech Rev 223:1–50Google Scholar
  5. 5.
    Hilty RD, Corman N (2007) An electrical characterization of tin whisker shorting. Proceedings of the 2007 materials research society spring meeting 993:E02-02Google Scholar
  6. 6.
    Hada Y, Morikawa O, Togami H (1978) Study of tin whiskers on electromagnetic relay parts. 26th Annual National Relay Conference, 9.1–9.15Google Scholar
  7. 7.
    Courey KJ, Asfour SS, Bayliss JA, Ludwig LL, Zapata MC (2008) Tin whisker electrical short circuit characteristics—part I. IEEE Trans Electron Pack Manuf 31:32–40CrossRefGoogle Scholar
  8. 8.
    Courey KJ, Asfour SS, Onar A, Bayliss JA, Ludwig LL, Wright MC (2008) Tin whisker electrical short circuit characteristics—Part II. IEEE Trans Electron Pack Manuf 32:41–48CrossRefGoogle Scholar
  9. 9.
    Dunn BD (1987/1988) Mechanical and electrical characteristics of tin whiskers with special reference to spacecraft systems. ESA J 11–12:1–17Google Scholar
  10. 10.
    Okada S, Higuchi S, Ando T (2003) Field reliability estimation of tin whiskers generated by thermal cycling stress. Capacitor and resistor technology symposium (CARTS) EuropeGoogle Scholar
  11. 11.
    Evans R (2006) Analysis of the effect of tin whiskers at high frequencies. IEEE Trans Electron Pack Manuf 29:274–279CrossRefGoogle Scholar
  12. 12.
    Galyon GT, Gedney R (2004) Avoiding tin whisker reliability problems. Circuits Assembly 15(8):26–31Google Scholar
  13. 13.
    Fang T, Mathew S, Osterman M, Pecht M (2007) Assessment of risk resulting from unattached tin whisker bridging. Circuit World 33:5–8CrossRefGoogle Scholar
  14. 14.
    Choi WJ, Galyon G, Tu KN, Lee TY (2004) The structure and kinetics of tin whisker formation and growth on high tin content finishes. In: Puttlitz KJ, Stalter KA (eds) Handbook of lead-free solder technology for microelectronic applications. Marcel Dekker, New YorkGoogle Scholar
  15. 15.
    Hilty RD (2009) Tin whiskers in electronic components. Tyco electronics. Accessed 10 October 2009
  16. 16.
    Nakadaira Y, Jeong S, Shim J, Seo J, Min S, Cho T, Kang S, Oh S (2008) Growth of tin whiskers for lead-free plated leadframe packages in high humid environments and during thermal cycling. Microelectron Reliab 48:83–104Google Scholar
  17. 17.
    Vicenzo A, Cavallotti PL, Crema P (2002) Electrochemical control of whisker growth on electrodeposited tin coatings. Trans IMF 80(3):79–84Google Scholar
  18. 18.
    Jiang B, Xian A-P (2007) Observations of ribbon-like whiskers on tin finish surface. J Mater Sci Mater Electron 18:513–518CrossRefGoogle Scholar
  19. 19.
    Rinne CL, Hren JJ, Fedkiw PS (2002) Electrodeposition of tin needle-like structures. J Electrochem Soc 149:C150–C158CrossRefGoogle Scholar
  20. 20.
    Nabarro FRN, Jackson PJ (1958) Growth of crystal whiskers. In: Doremus RH, Roberts BW, Turnbull D (eds) Growth and perfection of crystals. Wiley, New YorkGoogle Scholar
  21. 21.
    Hasiguti RR (1953) A tentative explanation of the accelerated growth of tin whiskers. Acta Metall 3:200–201Google Scholar
  22. 22.
    Franks J (1958) Growth of whiskers in the solid phase. Acta Metall 6:103–109CrossRefGoogle Scholar
  23. 23.
    Sobiech M, Welzel U, Mittemeijer EJ, Hugel W, Seekamp A (2008) Driving force for Sn whisker growth in the system Cu–Sn. Appl Phys Lett 93:011906/1–011906/3CrossRefGoogle Scholar
  24. 24.
    Sobiech M, Wohlschlögel M, Welzel U, Mittemeijer EJ, Hügel W, Seekamp A, Liu W, Ice GE (2009) Local, submicron strain gradients as the cause of Sn whisker growth. Appl Phys Lett 94:221901/1–221901/3CrossRefGoogle Scholar
  25. 25.
    Choi WJ, Lee TY, Tu KN, Tamura N, Celestre RS, MacDowell AA, Bong YY, Nguyen L (2003) Tin whiskers studied by synchrotron radiation scanning X-ray micro-diffraction. Acta Mater 51:6253–6261CrossRefGoogle Scholar
  26. 26.
    Lal S, Moyer TD (2005) Role of intrinsic stresses in the phenomena of tin whiskers in electrical connectors. IEEE Trans Electron Pack Manuf 28:63–74CrossRefGoogle Scholar
  27. 27.
    Laurila T, Vuorinen V, Kivilahti JK (2005) Interfacial reactions between lead-free solders and common base materials. Mater Sci Eng R49:1–60Google Scholar
  28. 28.
    Tu KN, Thompson RD (1982) Kinetics of interfacial reaction in bimetallic Cu–Sn thin films. Acta Metall 30:947–952CrossRefGoogle Scholar
  29. 29.
    Bhedwar H, Ray K, Kulkarni S, Balasubramanian V (1972) Kirkendall effect studies in copper–tin diffusion couples. Scr Metall 6:919–922CrossRefGoogle Scholar
  30. 30.
    Onishi M, Fujibuchi H (1975) Reaction-diffusion in the Cu–Sn system. Trans Jpn Inst Met 16:539Google Scholar
  31. 31.
    Oh M (1994) Growth kinetics of intermetallic phases in the Cu–Sn binary and the Cu–Ni–Sn ternary systems at low temperatures. Doctoral dissertation, Lehigh UniversityGoogle Scholar
  32. 32.
    Paul A (2004) The Kirkendall effect in solid state diffusion. PhD thesis, Eindhoven University of TechnologyGoogle Scholar
  33. 33.
    Ho CE, Yang SC, Kao CR (2007) Interfacial reaction issues for lead-free electronic solders. J Mater Sci Mater Electron 18:155–174CrossRefGoogle Scholar
  34. 34.
    Vo N, Kwoka M, Bush P (2005) Tin whisker test standardization. IEEE Trans Electron Pack Manuf 28:3–9CrossRefGoogle Scholar
  35. 35.
    Reynolds HL, Lee CJ, Smetana J (2007) Tin whiskers: mitigation strategies and testing. In: Bradley E, Handwerker CA, Bath J, Parker RD, Gedney RW (eds) Lead-free electronics. Wiley, Hoboken, NJGoogle Scholar
  36. 36.
    The Facts About Tin Whiskers (2009) EIA Engineering Bulletin, August 2004. Accessed 30 September 2009
  37. 37.
    Schroeder V, Bush P, Williams M, Vo NN, Reynolds HL (2006) Tin whisker test methods development. IEEE Trans Electron Pack Manuf 29:231–238CrossRefGoogle Scholar
  38. 38.
    Dittes M, Oberndorff P, Crema P, Schroeder V (2003) The effect of temperature cycling on tin whisker formation. Proceedings of the electronics packaging technology conference, pp 183–188Google Scholar
  39. 39.
    Brusse J (2002) Tin whisker observations on pure tin-plated ceramic chip capacitors. Proceedings of the AESF SUR/FIN, pp 45–61Google Scholar
  40. 40.
    Compton KG, Mendizza A, Arnold SM (1951) Filamentary growths on metal surfaces whiskers. Corrosion 7:327–334Google Scholar
  41. 41.
    Kehrer H-P, Kadereit HG (1970) Tracer experiments on the growth of tin whiskers. J Appl Phys 16:411–412Google Scholar
  42. 42.
    Chang CY, Vook RW (1993) The effect of surface aluminium oxide films on thermally induced hillock formation. Thin Solid Films 228:205–209CrossRefGoogle Scholar
  43. 43.
    Kawanaka R, Fujiwara K, Nango S, Hasegawa T (1983) Influence of impurities on the growth of tin whiskers. Jpn J Appl Phys 22:917–922CrossRefGoogle Scholar
  44. 44.
    Keming C, Wilcox GD (2005) Observations of the spontaneous growth of tin whiskers on tin-manganese alloy electrodeposits. Phys Rev Lett 94:066104/1–066104/4Google Scholar
  45. 45.
    Chuang T-H (2006) Rapid whisker growth on the surface of Sn–3Ag–0.5Cu–1.0Ce solder joints. Scr Mater 55:983–986MathSciNetCrossRefGoogle Scholar
  46. 46.
    Kim K-S, Matsuura T, Suganuma K (2006) Effects of Bi and Pb on oxidation in humidity for low-temperature lead-free solder systems. J Electron Mater 35:41–47CrossRefGoogle Scholar
  47. 47.
    Hoffman EN, Barsoum MW, Wang W, Doherty RD, Zavaliangos A (2005) On the spontaneous growth of soft metallic whiskers. Proceedings of the 51st IEEE holm conference on electrical contacts, pp 121–126Google Scholar
  48. 48.
    Oberndorff P, Dittes M, Crema P, Chopin S (2005) Whisker formation on matte Sn influencing of high humidity. Proceedings of the electronic components and technology conference, pp 429–433Google Scholar
  49. 49.
    Oberndorff P, Dittes M, Crema P, Su P, Yu E (2006) Humidity effects on Sn whisker formation. IEEE Trans Electron Pack Manuf 29:239–245CrossRefGoogle Scholar
  50. 50.
    Osenbach JW, De Lucca JM, Potteiger BD, Amin A, Shook RL, Baiocchi FA (2007) Sn corrosion and its influence on whisker growth. IEEE Trans Electron Pack Manuf 30:23–35CrossRefGoogle Scholar
  51. 51.
    Dittes M, Oberndorff P, Crema P (2004) PROTIN final reportGoogle Scholar
  52. 52.
    Osenbach JW, Shook RL, Vaccaro BT, Potteiger BD, Amin AN, Hooghan KN, Suratkar P, Ruengsinsub P (2005) Sn whiskers: material, design, processing, and post-plate reflow effects and development of an overall phenomenological theory. IEEE Trans Electron Pack Manuf 28:36–62CrossRefGoogle Scholar
  53. 53.
    Handwerker C, Pedigo A, Blendell J (2007) Whisker to hillock transition: stress relaxation mechanisms in Sn, Sn–Cu, and Sn–Pb films. Tin Whisker workshop, Electronic components and technology conference, RenoGoogle Scholar
  54. 54.
    Hilty RD, Corman NE, Herrmann H (2005) Electrostatic fields and current-flow impact on whisker growth. IEEE Trans Electron Pack Manuf 28:75–84CrossRefGoogle Scholar
  55. 55.
    Fukuda Y, Osterman M, Pecht M (2007) The impact of electrical current, mechanical bending, and thermal annealing on tin whisker growth. Microelectron Eng 47:88–92Google Scholar
  56. 56.
    Romm DW, Abbot DC, Grenney S, Khan M (2003) Whisker evaluation of tin-plated logic component leads. Application report SZZA037A. Accessed 31 Aug 2009
  57. 57.
    Liu SH, Chen C, Liu PC, Chou T (2004) Tin whisker growth driven by electrical currents. J Appl Phys 95:7742–7747CrossRefGoogle Scholar
  58. 58.
    Oberndorff P, Dittes M, Crema P (2004) Whisker testing: reality or fiction. Proceedings of the IPC/Soldertec 2nd international conference on lead free electronics, AmsterdamGoogle Scholar
  59. 59.
    Fukuda Y, Fang T, Ganesan S, Osterman M, Pecht M (2006) Tin whiskers in electronics. In: Ganesan S, Petch M (eds) Lead-free electronics. Wiley, HobokenGoogle Scholar
  60. 60.
    Lindborg U (1976) A model for the spontaneous growth of zinc, cadmium, and tin whiskers. Acta Metall 24:181–186CrossRefGoogle Scholar
  61. 61.
    Lee B-Z, Lee DN (1998) Spontaneous growth mechanism of tin whiskers. Acta Mater 46:3701–3712CrossRefGoogle Scholar
  62. 62.
    Ellis WC, Gibbons DF, Treuting RJ (1958) Growth of metal whiskers from the solid. In: Doremus RH, Roberts BW, Turnbull D (eds) Growth and perfection of crystals. Wiley, New YorkGoogle Scholar
  63. 63.
    Smetana J (2007) Theory of tin whisker growth: the end game. IEEE Trans Electron Pack Manuf 30:11–22CrossRefGoogle Scholar
  64. 64.
    Tu KN (1994) Irreversible process of spontaneous whisker growth in bimetallic Cu–Sn thin-film reactions. Phys Rev B 49:2030–2034CrossRefGoogle Scholar
  65. 65.
    Glazunova VK, Kudryavtsev NT (1963) An investigation of the conditions of spontaneous growth of filiform crystals on electrolytic coatings. Zhur Priklad Khim 36:543–550 (translated from Russian)Google Scholar
  66. 66.
    Furuta N, Hamamura K (1969) Growth mechanism of proper tin-whisker. Jpn J Appl Phys 8:1404–1410CrossRefGoogle Scholar
  67. 67.
    Vianco PT, Rejent JA (2009) Dynamic recrystallization (DXR) as the mechanism for Sn whisker development. Part I: a model. J Electron Mater 38:1815–1825CrossRefGoogle Scholar
  68. 68.
    Vianco PT, Rejent JA (2009) Dynamic recrystallization (DXR) as the mechanism for Sn whisker development. Part II: experimental study. J Electron Mater 38:1826–1837CrossRefGoogle Scholar
  69. 69.
    Buchovecky EJ, Du N, Bower AF (2009) A model of Sn whisker growth by coupled plastic flow and grain boundary diffusion. J Appl Phys 94:191904/1–191904/3Google Scholar
  70. 70.
    Franks J (1956) Metal whiskers. Nature 177:984CrossRefGoogle Scholar
  71. 71.
    Tu KN, Li JCM (2005) Spontaneous whisker growth on lead-free solder finishes. Mater Sci Eng A 409:131–139CrossRefGoogle Scholar
  72. 72.
    Galyon GT, Palmer L (2005) An integrated theory of whisker formation: the physical metallurgy of whisker formation and the role of internal stresses. IEEE Trans Electron Pack Manuf 28:17–30CrossRefGoogle Scholar
  73. 73.
    Frye A, Galyon GT, Palmer L (2007) Crystallographic texture and whiskers in electrodeposited tin films. IEEE Trans Electron Pack Manuf 30:2–10CrossRefGoogle Scholar
  74. 74.
    Moon K-W, Johnson CE, Williams ME, Kongstein O, Stafford GR, Handwerker CA, Boettinger WJ (2005) Observed correlation of Sn oxide film to Sn whisker growth in Sn–Cu electrodeposit for Pb-free solders. J Electron Mater 34:L31–L33CrossRefGoogle Scholar
  75. 75.
    Poker DB, Schubert J, Stritzker B (1987) Ion-induced growth of whiskers on Sn films. MRS symposia proceedings, 74 beam-solid interactions and transient processes, Boston, pp 529–534Google Scholar
  76. 76.
    Osenbach JW, De Lucca JM, Potteiger BD, Amin A, Baiocchi FA (2007) Sn-whiskers: truths and myths. J Mater Sci Mater Electron 18:283–305CrossRefGoogle Scholar
  77. 77.
    Kakeshita T, Shimizu K, Kawanaka R, Hasegawa T (1982) Grain size effect of electroplated tin coatings on whisker growth. J Mater Sci 17:2560–2566CrossRefGoogle Scholar
  78. 78.
    JEDEC/IPC Joint Publication JP002 (2006) Current tin whiskers theory and mitigation practices guidelines. Accessed 1 Aug 2009
  79. 79.
    Sakuyama S, Kutami M (2005) Substitute materials for complete elimination of hazardous substances. Study of whisker growth on lead-free plating. Fujitsu Sci Tech J 41(2):217–224Google Scholar
  80. 80.
    Boguslavsky I, Bush P (2003) Recrystallization principles applied to whisker growth in tin. IPC SMEMA Council APEX: S12-4, pp 1–10Google Scholar
  81. 81.
    Galyon GT, Xu C, Lal S, Notohardjono B, Palmer L (2005) The integrated theory of whisker formation—a stress analysis. Proceedings of the electronic components and technology conference, pp 421–428Google Scholar
  82. 82.
    Tu KN (1973) Interdiffusion and reaction in bimetallic Cu–Sn thin films. Acta Metall 21:347–354CrossRefGoogle Scholar
  83. 83.
    Porter DA, Easterling KE (1992) Phase transformations in metals and alloys. CRC, New YorkGoogle Scholar
  84. 84.
    Dittes M, Oberndorff P, Petit L (2003) Tin whisker formation: results, test methods and countermeasures. Proceedings of the 53 IEEE electronic components and technology conference, pp 822–826Google Scholar
  85. 85.
    Tu K-N, Suh J-o, Wu A T-C, Tamura N, Tung C-H (2005) Mechanism and prevention of spontaneous tin whisker growth. Mater Trans 46:2300–2308CrossRefGoogle Scholar
  86. 86.
    Moon K-W, Williams ME, Johnson CE, Stafford GR, Handwerker CA, Boettinger WJ (2001) The formation of whiskers on electroplated tin containing copper. In: Hanada S, Zhong Z, Nam SW, Wright RN (eds) Proceedings of the fourth pacific Rim international conference on advanced materials and processing. The Japanese Institute of Metals, pp 1115–1118Google Scholar
  87. 87.
    Williams ME, Moon K-W, Boettinger WJ, Josell D, Deal AD (2007) Hillock and whisker growth on Sn and SnCu electrodeposits on a substrate not forming interfacial intermetallic compounds. J Electron Mater 36:214–219CrossRefGoogle Scholar
  88. 88.
    Xu C, Zhang Y, Fan C, Abys JA (2005) Driving force for the formation of Sn whiskers: compressive stress—pathways for its generation and remedies for its elimination and minimization. IEEE Trans Electron Pack Manuf 28:31–35MATHCrossRefGoogle Scholar
  89. 89.
    Sabbagh NAJ, McQueen HJ (1975) Tin whiskers: causes and remedies. Met Finish 73:27–31Google Scholar
  90. 90.
    Oberndorff P, Chen CC, Yu E, van de Water J (2004) Whisker mitigation by postbake: test results. Proceedings of the IPC/Soldertec 2nd international conference on lead free electronics, AmsterdamGoogle Scholar
  91. 91.
    Pinsky DA (2008) The role of dissolved hydrogen and other trace impurities on propensity of tin deposits to grow whiskers. Microelectron Reliab 48:675–681CrossRefGoogle Scholar
  92. 92.
    Sobiech M, Welzel U, Schuster R, Mittemeijer EJ, Hügel W, Seekamp A, Müller V (2007) The microstructure and state of stress of Sn thin films after post-plating annealing: an explanation for the suppression of whisker formation? Proceedings of the 57th IEEE electronic components and technology conference, pp 192–197Google Scholar
  93. 93.
    Wei CC, Liu PC, Chen C, Lee JCB, Wang IP (2007) Relieving Sn whisker growth driven by oxidation on Cu leadframe by annealing and reflowing treatments. J Appl Phys 102:043521/1–043521/7Google Scholar
  94. 94.
    Zhang W, Egli A, Schwager F, Brown N (2005) Investigation of Sn–Cu intermetallic compounds by AFM: new aspects of the role of intermetallic compounds in whisker formation. IEEE Trans Electron Pack Manuf 28:85–93CrossRefGoogle Scholar
  95. 95.
    Takeuchi M, Kamiyama K, Suganuma K (2006) Suppression of tin whisker formation on fine pitch connectors by surface roughening. J Electron Mater 35:1918–1925CrossRefGoogle Scholar
  96. 96.
    Rodekohr CL, Flowers GT, Suhling JC, Bozack MJ (2008) Influence of substrate surface roughness on tin whisker growth. Proceedings of the 54th IEEE holm conference on electrical contacts, pp 245–248Google Scholar
  97. 97.
    Gorbunova KM, Glazunova VK (1984) Present state of the problem of spontaneous whisker crystals on electrolytic coatings. Prot Met 20:269–282Google Scholar
  98. 98.
    Britton SC (1974) Spontaneous growth of whiskers on tin coatings: 20 years of observation. Trans IMF 52:95–102Google Scholar
  99. 99.
    Kadesch JS, Brusse J (2001) The continuing dangers of tin whiskers and attempts to control them with conformal coat. NASA’s EEE Links Newsletter, July 2001. Accessed 30 Sept 2009
  100. 100.
    Kadesch JS, Leidecker H (2000) Effects of conformal coat on tin whisker growth. Proceedings of the 37th IMAPS Nordic annual conference, pp 108–116Google Scholar
  101. 101.
    Woodrow TA, Ledbury EA (2005) Evaluation of conformal coatings as a tin whisker mitigation strategy. IPC/JEDEC 8th international conference on lead-free electronic components and assemblies, San JoseGoogle Scholar
  102. 102.
    GEIA Engineering Bulletin GEB-0002 (2003) Reducing the risk of tin whisker induced failures in electronic equipmentGoogle Scholar
  103. 103.
    Novak J (1994) Physical analysis of dendrites within conformal coat. Proceedings of the IEEE aerospace applied conference, pp 381–390Google Scholar
  104. 104.
    Arnold SM (1959) The growth of metal whiskers on electrical components. Proceedings of the IEEE electronic components conference, pp 75–82Google Scholar
  105. 105.
    ASM Handbook (1992) Alloy phase diagrams, vol 3. ASM, ClevelandGoogle Scholar
  106. 106.
    Cavallotti PL, Nobili L, Vicenzo A (2005) Phase structure of electrodeposited alloys. Electrochim Acta 50:4557–4565CrossRefGoogle Scholar
  107. 107.
    Raub B, Blum W (1955) Electrodeposition of Pb–Sn alloys. Metalloberflache 9A:54–57 (in German). English translation by Duffy G (1961) NIST report AD0843305Google Scholar
  108. 108.
    Raub E, Elser F (1978) Die inhibierte Elektrokristallisation von Zinn-bleilegierungen. J Less Common Met 62:431–445CrossRefGoogle Scholar
  109. 109.
    Jordan M (1995) The electrodeposition of tin and its alloys. Eugen G. Leuze Publishers, Bad Saulgau, pp 219–226Google Scholar
  110. 110.
    Zhang W, Schwager F (2006) Effects of lead on tin whisker elimination. J Electrochem Soc 153:C337–C343CrossRefGoogle Scholar
  111. 111.
    Boettinger WJ, Johnson CE, Bendersky LA, Moon K-W, Williams ME, Stafford GR (2005) Whisker and hillock formation on Sn, Sn–Cu and Sn–Pb electrodeposits. Acta Mater 53:5033–5050CrossRefGoogle Scholar
  112. 112.
    JEDEC Standard JESD22-A121A (2008) Test method for measuring whisker growth on tin and tin alloy surface finishes. Accessed 30 Sept 2009
  113. 113.
    Smetana J, Gedney R (2005) Tin whisker management guidelines. Printed Circuit Design Manuf 22(12):14–17Google Scholar
  114. 114.
    JEDEC Standard JESD201A (2008) Environmental acceptance requirements for tin whisker susceptibility of tin and tin alloy surface finish. Accessed 30 Sept 2009
  115. 115.
    Sakamoto I (2005) Whisker test methods of JEITA whisker growth mechanism for test methods. IEEE Trans Electron Pack Manuf 28:10–16CrossRefGoogle Scholar
  116. 116.
    iNEMI user group recommendations on lead-free finishes for components used in high-reliability products, Version 4, 1 Dec, 2006. Accessed 30 Sept 2009
  117. 117.
    Reynolds HL (2007) Accelerated tin whisker test committee update: Phase 5 evaluation. Tin whisker workshop, Electronic components and technology conference, RenoGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Politecnico di Milano, Dipartimento di ChimicaMateriali, Ingegneria Chimica “Giulio Natta”MilanoItaly

Personalised recommendations