Concluding Remarks

Part of the Green Energy and Technology book series (GREEN)


In this concluding chapter we firstly discuss interlaboratory studies, which can be used to demonstrate the reproducibility of a measurement technique, or to compare the results of different techniques, and hence to assess the accuracy of the characterisation process. In particular, we discuss the results of a recent relevant interlaboratory study on hydrogen adsorption. We then discuss reference materials, which can be used to characterise and corroborate both sorption instrument performance and experimental methodology, before describing some provisional measurement guidelines, which provide both a guide to best practice in hydrogen sorption measurement and serve as a useful practical summary of the discussion of the experimental considerations in  Chap. 6. We conclude by emphasising the importance of future research into hydrogen sorption measurement accuracy, in order to aid our understanding of the interaction of hydrogen with matter and to help reduce the variation in the reported hydrogen sorption properties of new materials, as the search for a solution to the hydrogen storage problem continues.


Hydrogen Storage Hydrogen Adsorption Volumetric Measurement Hydrogen Uptake Microporous Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ASTM International (1999) Standard practice for conducting an interlaboratory study to determine the precision of a test method. E 691–699Google Scholar
  2. 2.
    Silvestre-Albero J, Sepúlveda-Escribano A, Rodríguez-Reinoso F, Kouvelos V, Pilatos G, Kanellopoulos NK, Krutyeva M, Grinberg F, Kaerger J, Spjelkavik AI, Stöcker M, Ferreira A, Brouwer S, Kapteijn F, Weitkamp J, Sklari SD, Zaspalis VT, Jones DJ, de Menorval LC, Lindheimer M, Caffarelli P, Borsella E, Tomlinson AAG, Linders MJG, Tempelman JL, Bal EA (2009) Characterisation measurements of common reference nanoporous materials by gas adsorption (Round Robin tests). In: Kaskel S, Llewellyn P, Rodríguez-Reinoso F, Seaton NA (eds) Characterisation of porous solids VIII: proceedings of the 8th international symposium on the characterisation of porous solids. RSC Publishing, CambridgeGoogle Scholar
  3. 3.
    Goodman AL, Busch A, Duffy GJ, Fitzgerald JE, Gasem KAM, Gensterblum Y, Krooss BM, Levy J, Ozdemir E, Pan Z, Robinson RL Jr, Schroeder K, Sudibandriyo M, White CM (2004) An inter-laboratory comparison of CO2 isotherms measured on Argonne premium coal samples. Energy Fuels 18:1175–1182CrossRefGoogle Scholar
  4. 4.
    Goodman AL, Busch A, Bustin RM, Chikatamarla L, Day S, Duffy GJ, Fitzgerald JE, Gasem KAM, Gensterblum Y, Hartman C, Jing C, Krooss BM, Mohammed S, Pratt T, Robinson RL Jr, Romanov V, Sakurovs R, Schroeder K, White CM (2007) Inter-laboratory comparison II: CO2 isotherms measured on moisture-equilibrated Argonne premium coals at 55°C and up to 15 MPa. Int J Coal Geol 72:153–164CrossRefGoogle Scholar
  5. 5.
    Gensterblum Y, van Hemert P, Billemont P, Busch A, Charriére D, Li D, Krooss BM, de Weireld G, Prinz D, Wolf K-HAA (2009) European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: activated carbon. Carbon 47(13):2958–2969CrossRefGoogle Scholar
  6. 6.
    Zlotea C, Moretto P, Steriotis T (2009) A Round Robin characterisation of the hydrogen sorption properties of a carbon based material. Int J Hydrogen Energy 34(7):3044–3057CrossRefGoogle Scholar
  7. 7.
    Blach TP, Gray EM (2007) Sieverts apparatus and methodology for accurate determination of hydrogen uptake by light-atom hosts. J Alloy Compd 446–447:692–697CrossRefGoogle Scholar
  8. 8.
    Schmitz B, Müller U, Trukhan N, Schubert M, Férey G, Hirscher M (2008) Heat of adsorption for hydrogen in microporous high-surface-area materials. ChemPhysChem 9:2181–2184CrossRefGoogle Scholar
  9. 9.
    Zhou W, Wu H, Hartman MR, Yildirim T (2007) Hydrogen and methane adsorption in metal-organic frameworks: a high-pressure volumetric study. J Phys Chem C 111(44):16131–16137CrossRefGoogle Scholar
  10. 10.
    Ellison SLR, Barwick VJ, Duguid Farrant TJ (2009) Practical statistics for the analytical scientist: a bench guide. RSC Publishing, CambridgeGoogle Scholar
  11. 11.
    International Laboratory Accreditation Cooperation (2005) Guidelines for the selection and use of reference materials. ILAC-G9:2005Google Scholar
  12. 12.
    Furukawa H, Miller MA, Yaghi OM (2007) Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J Mater Chem 17:3197–3204CrossRefGoogle Scholar
  13. 13.
    Hafizovic J, Bjørgen M, Olsbye U, Dietzel PDC, Bordiga S, Prestipino C, Lamberti C, Lillerud KP (2007) The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J Am Chem Soc 129(12):3612–3620CrossRefGoogle Scholar
  14. 14.
    Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214CrossRefGoogle Scholar
  15. 15.
    Thomas KM (2009) Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Trans 1487–1505Google Scholar
  16. 16.
    Tibbetts GG, Meisner GP, Olk CH (2001) Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon 39:2291–2301CrossRefGoogle Scholar
  17. 17.
    Poirier E, Chahine R, Tessier A, Bose TK (2005) Gravimetric and volumetric approaches adapted for hydrogen sorption measurements with in situ conditioning on small sorbent samples. Rev Sci Instrum 76:055101CrossRefGoogle Scholar
  18. 18.
    Blackman JM, Patrick JW, Snape CE (2006) An accurate volumetric differential pressure method for the determination of hydrogen storage capacity at high pressures in carbon materials. Carbon 44:918–927CrossRefGoogle Scholar
  19. 19.
    Mishra A, Banerjee S, Mohapatra SK, Graeve OA, Misra M (2008) Synthesis of carbon nanotube-TiO2 nanotubular material for reversible hydrogen storage. Nanotechnology 19:445607CrossRefGoogle Scholar
  20. 20.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  21. 21.
    British Standards Institution (1996) Determination of the specific surface area of powders - part 1: BET method of gas adsorption for solids (including porous materials). BS 4359-1:1996 (ISO 9277:1995)Google Scholar
  22. 22.
    Dąbrowski A, Robens E, Klobes P, Meyer K, Podkościelny P (2003) Standardization of methods for characterizing the surface geometry of solids. Part Part Syst Charact 20:311–322CrossRefGoogle Scholar
  23. 23.
    Japanese Industrial Standards Committee (2007) Glossary of terms used in hydrogen absorbing alloys. JIS H 7003:2007 (E)Google Scholar
  24. 24.
    Japanese Industrial Standards Committee (2007) Method for measurement of pressure-composition-temperature (PCT) relations of hydrogen absorbing alloys. JIS H 7201:2007 (E)Google Scholar
  25. 25.
    Japanese Industrial Standards Committee (2007) Method for measurement of hydrogen absorption/desorption reaction rate of hydrogen absorbing alloys. JIS H 7202:2007 (E)Google Scholar
  26. 26.
    Japanese Industrial Standards Committee (2007) Method for measurement of hydrogen absorption/desorption cycle characteristic of hydrogen absorbing alloys. JIS H 7203:2007 (E)Google Scholar
  27. 27.
    Broom DP (2008) Hydrogen sorption measurements on potential storage materials: experimental methods and measurement accuracy. EUR 23242 EN. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  28. 28.
    Liang SC (1953) On the calculation of thermal transpiration. J Phys Chem 57:910–911CrossRefGoogle Scholar
  29. 29.
    Takaishi T, Sensui Y (1963) Thermal transpiration effect of hydrogen, rare gases and methane. Trans Faraday Soc 59:2503–2514CrossRefGoogle Scholar
  30. 30.
    Gross KJ, Carrington KR, Barcelo S, Karkamkar A, Purewal J, Parilla P (2010) Recommended best practices for the characterization of storage properties of hydrogen storage materials, V2-79, US DOE hydrogen program document. Accessed 4 Jul 2010

Copyright information

©  Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Hiden Isochema LtdWarringtonUK

Personalised recommendations