Experimental Considerations

  • Darren P. Broom
Part of the Green Energy and Technology book series (GREEN)


In this chapter, we discuss many of the practical issues that can affect the accuracy of gas phase hydrogen sorption measurement techniques. We begin with some relevant properties of gaseous hydrogen, such as the description of its compressibility as a function of temperature and pressure, the Joule–Thomson effect, thermal conductivity and the gas purity. We then cover some of the properties of materials that can affect hydrogen sorption measurement, including our knowledge of the sample volume, density and mass, the sensitivity of materials to air and moisture, the history and purity of samples, and gaseous impurity gettering. General instrumentation issues, such as the vacuum and pressure handling capability of apparatus, its thermal stability and homogeneity, and the accuracy of pressure and temperature measurement, are then discussed. Two aspects of experimental measurement methodology, namely sample degassing and activation, and equilibration times, are then covered. The last three sections of the chapter then discuss a series of issues that can affect the volumetric, gravimetric and thermal desorption methods, respectively.


Hydrogen Storage Volumetric Measurement Hydrogen Uptake Gravimetric Measurement Hydrogen Sorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Broom DP, Moretto P (2007) Accuracy in hydrogen sorption measurements. J Alloy Compd 446–447:687–691CrossRefGoogle Scholar
  2. 2.
    Broom DP (2007) The accuracy of hydrogen sorption measurements on potential storage materials. Int J Hydrogen Energy 32:4871–4888CrossRefGoogle Scholar
  3. 3.
    Broom DP (2008) Hydrogen sorption measurements on potential storage materials: experimental methods and measurement accuracy. EUR 23242 EN. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  4. 4.
    McCarty RD (1975) Hydrogen technical survey—thermophysical properties. Report number: NASA-SP-3089. NASA Scientific and Technical Information Office, Washington DCGoogle Scholar
  5. 5.
    McCarty RD, Hord J, Roder HM (1981) Selected properties of hydrogen (engineering design data). NBS monograph 168. National Bureau of Standards, Washington DCGoogle Scholar
  6. 6.
    Pitzer KS (1955) The volumetric and thermodynamic properties of fluids. I. Theoretical basis and virial coefficients. J Am Chem Soc 77(13):3427–3433CrossRefGoogle Scholar
  7. 7.
    Pitzer KS, Lippmann DZ, Curl RF, Huggins CM, Petersen DE (1955) The volumetric and thermodynamic properties of fluids. II. Compressibility factor, vapor pressure and entropy of vaporization. J Am Chem Soc 77(13):3433–3440CrossRefGoogle Scholar
  8. 8.
    Span R, Wagner W, Lemmon EW, Jacobsen RT (2001) Multiparameter equations of state—recent trends and future challenges. Fluid Phase Equilib 183–184:1–20CrossRefGoogle Scholar
  9. 9.
    Zhou L, Zhou Y (2001) Determination of compressibility factor and fugacity coefficient of hydrogen in studies of adsorptive storage. Int J Hydrogen Energy 26:597–601CrossRefGoogle Scholar
  10. 10.
    Zhang C, Lu X, Gu A (2004) How to accurately determine the uptake of hydrogen in carbonaceous materials. Int J Hydrogen Energy 29:1271–1276CrossRefGoogle Scholar
  11. 11.
    Zhou W, Wu H, Hartman MR, Yildirim T (2007) Hydrogen and methane adsorption in metal-organic frameworks: a high-pressure volumetric study. J Phys Chem C 111(44):16131–16137CrossRefGoogle Scholar
  12. 12.
    Nasrifar K (2010) Comparative study of eleven equations of state in predicting the thermodynamic properties of hydrogen. Int J Hydrogen Energy 35:3802–3811CrossRefGoogle Scholar
  13. 13.
    Kumar KH, Starling KE (1982) The most general density-cubic equation of state: application to pure nonpolar fluids. Ind Eng Chem Fundam 21:255–262CrossRefGoogle Scholar
  14. 14.
    Tibbetts GG, Meisner GP, Olk CH (2001) Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon 39:2291–2301CrossRefGoogle Scholar
  15. 15.
    Redlich O, Kwong JNS (1949) On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chem Rev 44(1):233–244CrossRefGoogle Scholar
  16. 16.
    Soave G (1972) Equilibrium constants from a modified Redlich–Kwong equation of state. Chem Eng Sci 27:1197–1203CrossRefGoogle Scholar
  17. 17.
    Perry RH, Green DW (1997) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  18. 18.
    Xiang Z, Lan J, Cao D, Shao X, Wang W, Broom DP (2009) Hydrogen storage in mesoporous coordination frameworks: experiment and molecular simulation. J Phys Chem C 113:15106–15109CrossRefGoogle Scholar
  19. 19.
    Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schröder M (2009) High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc 131(6):2159–2171CrossRefGoogle Scholar
  20. 20.
    Peng D-Y, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15(1):59–64MATHCrossRefGoogle Scholar
  21. 21.
    Ansón A, Benham M, Jagiello J, Callejas MA, Benito AM, Maser WK, Züttel A, Sudan P, Martínez MT (2004) Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques. Nanotechnology 15:1503–1508CrossRefGoogle Scholar
  22. 22.
    Jagiello J, Ansón A, Martínez MT (2006) DFT-based prediction of high-pressure H2 adsorption on porous carbons at ambient temperatures from low-pressure adsorption data measured at 77 K. J Phys Chem B 110:4531–4534CrossRefGoogle Scholar
  23. 23.
    Frost H, Düren T, Snurr RQ (2006) Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. J Phys Chem B 110:9565–9570CrossRefGoogle Scholar
  24. 24.
    Hemmes H, Driessen A, Griessen R (1986) Thermodynamic properties of hydrogen at pressures up to 1 Mbar and temperatures between 100 and 1,000 K. J Phys C: Solid State Phys 19:3571–3585CrossRefGoogle Scholar
  25. 25.
    McLennan KG, Gray EM (2004) An equation of state for deuterium gas to 1,000 bar. Meas Sci Technol 15:211–215CrossRefGoogle Scholar
  26. 26.
    Beattie JA, Bridgeman OC (1928) A new equation of state for fluids. Proc Am Acad Arts Sci 63(5):229–308CrossRefGoogle Scholar
  27. 27.
    Rao YVC (2004) Introduction to thermodynamics, 2nd edn. Universities Press, HyderabadGoogle Scholar
  28. 28.
    Paskevicius M, Sheppard DA, Buckley CE (2010) Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. J Am Chem Soc 132:5077–5083CrossRefGoogle Scholar
  29. 29.
    Stampfer JF, Holley CE, Suttle JF (1960) The magnesium-hydrogen system. J Am Chem Soc 82(14):3504–3508CrossRefGoogle Scholar
  30. 30.
    Lemmon EW, Huber ML, McLinden MO (2007) NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0, National Institute of Standards and Technology, Standard Reference Data Program, GaithersburgGoogle Scholar
  31. 31.
    Benedict M, Webb GB, Rubin LC (1940) An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures. I. Methane, ethane, propane and n-butane. J Chem Phys 8:334–345CrossRefGoogle Scholar
  32. 32.
    Starling KE (1973) Fluid thermodynamic properties for light petroleum systems. Gulf Publishing Co, HoustonGoogle Scholar
  33. 33.
    Leachman JW (2007) Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. MSc thesis, University of IdahoGoogle Scholar
  34. 34.
    Leachman JW, Jacobsen RT, Penoncello SG, Lemmon EW (2009) Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J Phys Chem Ref Data 38(3):721–748CrossRefGoogle Scholar
  35. 35.
    Latimer RE, Mostello RA (1964) Thermodynamic comparison of large-scale liquefaction of air, hydrogen, and helium. AIChE J 10(3):407–415CrossRefGoogle Scholar
  36. 36.
    Wisniak J (1999) The Joule–Thomson coefficient for pure gases and their mixtures. Chem Educ 4:51–57CrossRefGoogle Scholar
  37. 37.
    Johnston HL, Bezman II, Hood CB (1946) Joule–Thomson effects in hydrogen at liquid air and at room temperatures. J Am Chem Soc 68(11):2367–2373CrossRefGoogle Scholar
  38. 38.
    Bruno TJ, Svoronos PDN (1989) CRC handbook of basic tables for chemical analysis. CRC Press, Boca RatonGoogle Scholar
  39. 39.
    Leachman JW, Jacobsen RT, Penoncello SG, Huber ML (2007) Current status of transport properties of hydrogen. Int J Thermophys 28:773–795CrossRefGoogle Scholar
  40. 40.
    Yang RT (2000) Hydrogen storage by alkali-doped carbon nanotubes–revisited. Carbon 38:623–626CrossRefGoogle Scholar
  41. 41.
    Chen P, Wu X, Lin J, Tan KL (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285:91–93CrossRefGoogle Scholar
  42. 42.
    Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120:389–398CrossRefGoogle Scholar
  43. 43.
    Dillon AC, Gennett T, Alleman JL, Jones KM, Parilla PA, Heben MJ (2000) Carbon nanotube materials for hydrogen storage. In: Proceedings of the 2000 Hydrogen Program Review NRL/CP-570-28890. Accessed 13 Sept 2009
  44. 44.
    Hirscher M, Becher M, Haluska M, Dettlaff-Weglikowska U, Quintel A, Duesberg GS, Choi Y-M, Downes P, Hulman M, Roth S, Stepanek I, Bernier P (2001) Hydrogen storage in sonicated carbon materials. Appl Phys A 72:129–132CrossRefGoogle Scholar
  45. 45.
    Züttel A, Orimo S (2002) Hydrogen in nanostructured, carbon-related, and metallic materials. MRS Bull 27(9):705–711CrossRefGoogle Scholar
  46. 46.
    Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Springer, DordrechtGoogle Scholar
  47. 47.
    Jordá-Beneyto M, Lozano-Castelló D, Suárez-García F, Cazorla-Amorós D, Linares-Solano Á (2008) Advanced activated carbon monoliths and activated carbons for hydrogen storage. Microporous Mesoporous Mater 112:235–242CrossRefGoogle Scholar
  48. 48.
    Neimark AV, Ravikovitch PI (1997) Calibration of pore volume in adsorption experiments and theoretical models. Langmuir 13:5148–5160CrossRefGoogle Scholar
  49. 49.
    Malbrunot P, Vidal D, Vermesse J, Chahine R, Bose TK (1997) Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure. Langmuir 13:539–544CrossRefGoogle Scholar
  50. 50.
    Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504CrossRefGoogle Scholar
  51. 51.
    Gumma S, Talu O (2003) Gibbs dividing surface and helium adsorption. Adsorption 9:17–28CrossRefGoogle Scholar
  52. 52.
    Černý R, Joubert J-M, Latroche M, Percheron-Guégan A, Yvon K (2000) Anisotropic diffraction peak broadening and dislocation substructure in hydrogen-cycled LaNi5 and substitutional derivatives. J Appl Crystallogr 33:997–1005 (Erratum: Černý R et al (2002) J Appl Crystallogr 35:288)CrossRefGoogle Scholar
  53. 53.
    Wanner M, Friedlmeier G, Hoffmann G, Groll M (1997) Thermodynamic and structural changes of various intermetallic compounds during extended cycling in closed systems. J Alloy Compd 253–254:692–697CrossRefGoogle Scholar
  54. 54.
    Verma SK, Walker PL (1992) Carbon molecular sieves with stable hydrophobic surfaces. Carbon 30:837–844CrossRefGoogle Scholar
  55. 55.
    Menendez I, Fuertes AB (2001) Aging of carbon membranes under different environments. Carbon 39:733–740CrossRefGoogle Scholar
  56. 56.
    Strelko V, Malik DJ, Streat M (2002) Characterisation of the surface of oxidised carbon adsorbents. Carbon 40:95–104CrossRefGoogle Scholar
  57. 57.
    Buckley CE, Gray EM, Kisi EH (1995) Stability of the hydrogen absorption and desorption plateaux in LaNi5-H. Part 4: thermal history effects. J Alloy Compd 231:460–466CrossRefGoogle Scholar
  58. 58.
    Percheron-Guégan A, Welter JM (1988) Preparation of intermetallics and hydrides. In: Schlapbach L (ed) Topics in applied physics vol. 63: hydrogen in intermetallic compounds I. Electronic, thermodynamic and crystallographic properties, preparation. Springer-Verlag, BerlinGoogle Scholar
  59. 59.
    Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214CrossRefGoogle Scholar
  60. 60.
    Thomas KM (2009) Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Trans 1487–1505Google Scholar
  61. 61.
    Hafizovic J, Bjørgen M, Olsbye U, Dietzel PDC, Bordiga S, Prestipino C, Lamberti C, Lillerud KP (2007) The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J Am Chem Soc 129(12):3612–3620CrossRefGoogle Scholar
  62. 62.
    Tsao C-S, Yu M-S, Chung T-Y, Wu H-C, Wang C-Y, Chang K-S, Chen H-L (2007) Characterization of pore structure in metal-organic framework by small-angle X-ray scattering. J Am Chem Soc 129:15997–16004CrossRefGoogle Scholar
  63. 63.
    Zhao XB, Xiao B, Fletcher AJ, Thomas KM (2005) Hydrogen adsorption on functionalized nanoporous activated carbons. J Phys Chem B 109:8880–8888CrossRefGoogle Scholar
  64. 64.
    Siegmann HC, Schlapbach L, Brundle CR (1978) Self-restoring of the active surface in the hydrogen sponge LaNi5. Phys Rev Lett 40(14):972–975CrossRefGoogle Scholar
  65. 65.
    Peisl J (1978) Lattice strains due to hydrogen in metals. In: Alefeld G, Völkl J (eds) Topics in applied physics vol. 28: hydrogen in metals I. Basic properties. Springer-Verlag, BerlinGoogle Scholar
  66. 66.
    Schülke M, Paulus H, Lammers M, Kiss G, Réti F, Müller K-H (2008) Influence of surface contaminations on the hydrogen storage behaviour of metal hydride alloys. Anal Bioanal Chem 390:1495–1505CrossRefGoogle Scholar
  67. 67.
    Gray EM, Blach TP, Buckley CE (1999) Stability of the hydrogen absorption and desorption plateaux in LaNi5-H. Part 5: H capacity. J Alloy Compd 293–295:57–61CrossRefGoogle Scholar
  68. 68.
    Chambers A, Fitch RK, Halliday BS (1998) Basic vacuum technology, 2nd edn. Institute of Physics Publishing, BristolCrossRefGoogle Scholar
  69. 69.
    Japanese Industrial Standards Committee (2007) Method for measurement of pressure-composition-temperature (PCT) relations of hydrogen absorbing alloys. JIS H 7201:2007 (E)Google Scholar
  70. 70.
    Wallbank AD, McQuillan AD (1975) Thermal transpiration correction of hydrogen equilibrium pressure measurements in metal/hydrogen solution. J Chem Soc Faraday Trans 1(71):685–689Google Scholar
  71. 71.
    Liang SC (1953) On the calculation of thermal transpiration. J Phys Chem 57:910–911CrossRefGoogle Scholar
  72. 72.
    Takaishi T, Sensui Y (1963) Thermal transpiration effect of hydrogen, rare gases and methane. Trans Faraday Soc 59:2503–2514CrossRefGoogle Scholar
  73. 73.
    York DC, Chambers A, Chew AD (2000) Thermal transpiration of helium and nitrogen in 50-μm bore silica capillaries. Vacuum 59:910–918CrossRefGoogle Scholar
  74. 74.
    Wilson T, Tyburski A, DePies MR, Vilches OE, Becquet D, Bienfait M (2002) Adsorption of H2 and D2 on carbon nanotube bundles. J Low Temp Phys 126(1–2):403–408CrossRefGoogle Scholar
  75. 75.
    Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, LondonGoogle Scholar
  76. 76.
    Redhead PA (2002) Recommended practices for measuring and reporting outgassing data. J Vac Sci Technol A 20(5):1667–1675CrossRefGoogle Scholar
  77. 77.
    Benham MJ, Ross DK (1989) Experimental determination of absorption-desorption isotherms by computer-controlled gravimetric analysis. Z Phys Chem NF 163:S25–S32Google Scholar
  78. 78.
    Blach TP, Gray EM (2007) Sieverts apparatus and methodology for accurate determination of hydrogen uptake by light-atom hosts. J Alloy Compd 446–447:692–697CrossRefGoogle Scholar
  79. 79.
    Fuller EL, Poulis JA, Czanderna AW, Robens E (1979) Volumetric and gravimetric methods of determining monolayer capacities. Thermochim Acta 29:315–318CrossRefGoogle Scholar
  80. 80.
    Kiyobayashi T, Hiroyuki T, Takeshita T, Tanaka H, Takeichi N, Züttel A, Schlapbach L, Kuriyama N (2002) Hydrogen adsorption in carbonaceous materials—how to determine the storage capacity accurately. J Alloy Compd 330–332:666–669CrossRefGoogle Scholar
  81. 81.
    Blackman JM, Patrick JW, Snape CE (2006) An accurate volumetric differential pressure method for the determination of hydrogen storage capacity at high pressures in carbon materials. Carbon 44:918–927CrossRefGoogle Scholar
  82. 82.
    Poulis JA, Thomas JM (1963) Disturbances arising from thermal transpiration in microbalance experiments. J Sci Instrum 40:95–100CrossRefGoogle Scholar
  83. 83.
    Poulis JA, Pelupessy B, Massen CH, Thomas JM (1964) Longitudinal Knudsen forces. J Sci Instrum 41:295–301CrossRefGoogle Scholar
  84. 84.
    Poulis JA, Massen CH, Thomas JM (1966) Longitudinal Knudsen forces II. J Sci Instrum 43:234–237CrossRefGoogle Scholar
  85. 85.
    Behrndt KH, Massen CH, Poulis JA, Steensland T (1966) Longitudinal thermomolecular flow at intermediate pressures—a comparison. In: Behrndt KH (ed) Vacuum microbalance techniques, vol 5. Plenum Press, New YorkGoogle Scholar
  86. 86.
    Fernández JF, Cuevas F, Sánchez C (2000) Simultaneous differential scanning calorimetry and thermal desorption spectroscopy measurements for the study of the decomposition of metal hydrides. J Alloy Compd 298:244–253CrossRefGoogle Scholar
  87. 87.
    von Zeppelin F, Haluška M, Hirscher M (2003) Thermal desorption spectroscopy as a quantitative tool to determine the hydrogen content in solids. Thermochim Acta 404:251–258CrossRefGoogle Scholar
  88. 88.
    Panella B, Hirscher M, Ludescher B (2007) Low-temperature thermal-desorption mass spectroscopy applied to investigate the hydrogen adsorption on porous materials. Microporous Mesoporous Mater 103(1–3):230–234CrossRefGoogle Scholar
  89. 89.
    Panella B, Hönes K, Müller U, Trukhan N, Schubert M, Pütter H, Hirscher M (2008) Desorption studies of hydrogen in metal-organic frameworks. Angew Chem Int Ed 47:2138–2142CrossRefGoogle Scholar
  90. 90.
    Zlotea C, Sahlberg M, Özbilen S, Moretto P, Andersson Y (2008) Hydrogen desorption studies of the Mg24Y5–H system: formation of Mg tubes, kinetics and cycling effects. Acta Mater 56:2421–2428CrossRefGoogle Scholar

Copyright information

©  Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Hiden Isochema LtdWarringtonUK

Personalised recommendations