Advertisement

Complementary Characterisation Techniques

  • Darren P. Broom
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

In this chapter we cover some of the common complementary techniques used for hydrogen storage material characterisation. We begin with thermal analysis and calorimetry, which can be used to determine the thermodynamic properties that can also be measured using hydrogen sorption techniques, as well as activation energies and characteristic temperatures of absorption and desorption. Gas adsorption methods, such as BET (Brunauer–Emmett–Teller) surface area measurement and DFT (Density Functional Theory) based pore size distribution determination, are commonly used to characterise the properties of porous hydrogen adsorbents and so these are then covered, with a focus on the data analysis methods used in each case. We then consider neutron and X-ray powder diffraction and small angle scattering, which can complement hydrogen sorption measurements for both hydrides and porous adsorbents. Different types of spectroscopy are then covered including Inelastic Neutron Scattering (INS), proton (1H) Nuclear Magnetic Resonance (NMR) and Variable Temperature Infrared (VTIR) spectroscopy. A number of other techniques that do not fit readily into the above categories are also briefly covered.

Keywords

Hydrogen Storage Metal Hydride Small Angle Neutron Scattering Inelastic Neutron Scattering Microporous Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brown ME (2001) Introduction to thermal analysis: techniques and applications, 2nd edn edn. Kluwer, DordrechtGoogle Scholar
  2. 2.
    Gabbot P (2008) A practical introduction to differential scanning calorimetry. In: Gabbott P (ed) Principles and applications of thermal analysis. Blackwell, OxfordGoogle Scholar
  3. 3.
    Rouquerol J, Wadsö I, Lever T, Haines P (2008) Developments in nomenclature. In: Brown ME, Gallagher PK (eds) Handbook of thermal analysis and calorimetry: recent advances, techniques and applications, vol 5. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Fernández JF, Cuevas F, Sánchez C (2000) Simultaneous differential scanning calorimetry and thermal desorption spectroscopy measurements for the study of the decomposition of metal hydrides. J Alloy Compd 298:244–253Google Scholar
  5. 5.
    Wenzl H, Lebsanft E (1980) Phase diagram and thermodynamic parameters of the quasibinary interstitial alloy Fe0.5Ti0.5Hx in equilibrium with hydrogen gas. J Phys F: Met Phys 10:2147–2156Google Scholar
  6. 6.
    Luo W, Clewley JD, Flanagan TB, Oates WA (1992) Thermodynamic characterization of the Zr-Mn-H system part 1. Reaction of H2 with single-phase ZrMn2+x C-14 Laves phase alloy. J Alloy Compd 185:321–338Google Scholar
  7. 7.
    Bohmhammel K, Christ B, Wolf G (1996) Isobaric and isothermal DSC measurements of metal-hydrogen systems. Thermochim Acta 271:67–73Google Scholar
  8. 8.
    Bowerman BS, Wulff CA, Biehl GE, Flanagan TB (1980) Calorimetry within hysteresis loops: application to LaNi5-H. J Less-Common Met 73:1–13Google Scholar
  9. 9.
    Murray JJ, Post ML, Taylor JB (1980) Differential heat flow calorimetry of the hydrides of intermetallic compounds. J Less-Common Met 73:33–40Google Scholar
  10. 10.
    Murray JJ, Post ML, Taylor JB (1983) The thermodynamics of the system CaNi5–H2 using differential heat conduction calorimetry. J Less-Common Met 90:65–73Google Scholar
  11. 11.
    Hubbard WN, Rawlins PL, Connick PA, Stedwell RE, O’Hare PAG (1983) The standard enthalpy of formation of LaNi5. The enthalpies of hydriding of LaNi5-xAlx. J Chem Thermodyn 15:785–798Google Scholar
  12. 12.
    Luo S, Luo W, Clewley JD, Flanagan TB, Bowman RC (1995) Thermodynamic and degradation studies of LaNi4.8Sn0.2-H using isotherms and calorimetry. J Alloy Compd 231:473–478Google Scholar
  13. 13.
    Spit FHM, Drijver JW, Radelaar S (1980) Hydrogen sorption by the metallic glass Ni64Zr36 and by related crystalline compounds. Scr Metall 14:1071–1076Google Scholar
  14. 14.
    Zaluska A, Zaluski L, Ström-Olsen JO (2001) Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl Phys A 72:157–165Google Scholar
  15. 15.
    Rongeat C, Llamas-Jansa I, Doppiu S, Deledda S, Borgschulte A, Schultz L, Gutfleisch O (2007) Determination of the heat of hydride formation/decomposition by high-pressure differential scanning calorimetry (HP-DSC). J Phys Chem B 111:13301–13306Google Scholar
  16. 16.
    Dilts JA, Ashby EC (1972) A study of the thermal decomposition of complex metal hydrides. Inorg Chem 11(6):1230–1236Google Scholar
  17. 17.
    Mamatha M, Bogdanović B, Felderhoff M, Pommerin A, Schmidt W, Schüth F, Weidenthaler C (2006) Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium-magnesium alanates. J Alloy Compd 407:78–86Google Scholar
  18. 18.
    Wang F, Liu Y, Gao M, Luo K, Pan H, Wang Q (2009) Formation reactions and the thermodynamics and kinetics of dehydrogenation reaction of mixed alanate Na2LiAlH6. J Phys Chem C 113:7978–7984Google Scholar
  19. 19.
    Hanada N, Chłopek K, Frommen C, Lohstroh W, Fichtner M (2008) Thermal decomposition of Mg(BH4)2 under He flow and H2 pressure. J Mater Chem 18:2611–2614Google Scholar
  20. 20.
    Soloveichik GL, Gao Y, Rijssenbeek J, Andrus M, Kniajanski S, Bowman RC Jr, Hwang S-J, Zhao J-C (2009) Magnesium borohydride as a hydrogen storage material: properties and dehydrogenation pathway of unsolvated Mg(BH4)2. Int J Hydrogen Energy 34:916–928Google Scholar
  21. 21.
    Yan Y, Li H-W, Sato T, Umeda N, Miwa K, Towata S, Orimo S (2009) Dehydriding and rehydriding properties of yttrium borohydride Y(BH4)3 prepared by liquid-phase synthesis. Int J Hydrogen Energy 34:5732–5736Google Scholar
  22. 22.
    Zakotnik M, Prosperi D, Williams AJ (2009) Kinetic studies of hydrogen desorption in SmCo 2/17 sintered magnets. Thermochim Acta 486:41–45Google Scholar
  23. 23.
    Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, LondonGoogle Scholar
  24. 24.
    Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Springer, DordrechtGoogle Scholar
  25. 25.
    Brunauer S (1943) The adsorption of gases and vapors vol 1—physical adsorption. Princeton University Press, PrincetonGoogle Scholar
  26. 26.
    Do DD (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, LondonGoogle Scholar
  27. 27.
    Rouquerol J, Llewellyn P, Rouquerol F (2007) Is the BET equation applicable to microporous adsorbents? Stud Surf Sci Catal 160:49–56Google Scholar
  28. 28.
    Moellmer J, Celer EB, Luebke R, Cairns AJ, Staudt R, Eddaoudi M, Thommes M (2010) Insights on adsorption characterization of metal-organic frameworks: a benchmark study on the novel soc-MOF. Microporous Mesoporous Mater 129:345–353Google Scholar
  29. 29.
    McClellan AL, Harnsberger HF (1967) Cross-sectional areas of molecules adsorbed on solid surfaces. J Colloid Interface Sci 23:577–599Google Scholar
  30. 30.
    Gelb LD, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M (1999) Phase separation in confined systems. Rep Prog Phys 62:1573–1659Google Scholar
  31. 31.
    Lastoskie C, Gubbins KE, Quirke N (1993) Pore size distribution analysis of microporous carbons: a density functional theory approach. J Phys Chem 97:4786–4796Google Scholar
  32. 32.
    Tarazona P, Marconi UMB, Evans R (1987) Phase equilibria of fluid interfaces and confined fluids. Mol Phys 60(3):573–595Google Scholar
  33. 33.
    House WA (1978) Adsorption on a random configuration of adsorptive hetereogeneities. J Colloid Interface Sci 67(1):166–180Google Scholar
  34. 34.
    Merz PH (1980) Determination of adsorption energy distribution by regularization and a characterization of certain adsorption isotherms. J Comput Phys 38:64–85Google Scholar
  35. 35.
    Szombathely MV, Bräuer P, Jaroniec M (1992) The solution of adsorption integral equations by means of the regularization method. J Comput Chem 13(1):17–32MathSciNetGoogle Scholar
  36. 36.
    Jagiełło J (1994) Stable numerical solution of the adsorption integral equation using splines. Langmuir 10:2778–2785Google Scholar
  37. 37.
    Jagiello J, Thommes M (2004) Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 42:1227–1232Google Scholar
  38. 38.
    Jagiello J, Ansón A, Martínez MT (2006) DFT-based prediction of high-pressure H2 adsorption on porous carbons at ambient temperatures from low-pressure adsorption data measured at 77 K. J Phys Chem B 110:4531–4534Google Scholar
  39. 39.
    Jagiello J, Ania CO, Parra JB, Jagiello L, Pis JJ (2007) Using DFT analysis of adsorption data of multiple gases including H2 for the comprehensive characterization of microporous carbons. Carbon 45:1066–1071Google Scholar
  40. 40.
    Jagiello J, Betz W (2008) Characterization of pore structure of carbon molecular sieves using DFT analysis of Ar and H2 adsorption data. Microporous Mesoporous Mater 108:117–122Google Scholar
  41. 41.
    Thomas KM (2009) Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Trans 9:1487–1505Google Scholar
  42. 42.
    Silvestre-Albero J, Sepúlveda-Escribano A, Rodríguez-Reinoso F, Kouvelos V, Pilatos G, Kanellopoulos NK, Krutyeva M, Grinberg F, Kaerger J, Spjelkavik AI, Stöcker M, Ferreira A, Brouwer S, Kapteijn F, Weitkamp J, Sklari SD, Zaspalis VT, Jones DJ, de Menorval LC, Lindheimer M, Caffarelli P, Borsella E, Tomlinson AAG, Linders MJG, Tempelman JL, Bal EA (2009) Characterisation measurements of common reference nanoporous materials by gas adsorption (Round Robin tests). In: Kaskel S, Llewellyn P, Rodríguez-Reinoso F, Seaton NA (eds) Characterisation of porous solids VIII: proceedings of the 8th international symposium on the characterisation of porous solids. RSC Publishing, CambridgeGoogle Scholar
  43. 43.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619Google Scholar
  44. 44.
    Texier-Mandoki N, Dentzer J, Piquero T, Saadallah S, David P, Vix-Guterl C (2004) Hydrogen storage in activated carbon materials: role of the nanoporous texture. Carbon 42:2744–2747Google Scholar
  45. 45.
    Gadiou R, Saadallah S-E, Piquero T, David P, Parmentier J, Vix-Guterl C (2005) The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons. Microporous Mesoporous Mater 79:121–128Google Scholar
  46. 46.
    Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2007) Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45:293–303Google Scholar
  47. 47.
    Jordá-Beneyto M, Lozano-Castelló D, Suárez-García F, Cazorla-Amorós D, Linares-Solano Á (2008) Advanced activated carbon monoliths and activated carbons for hydrogen storage. Microporous Mesoporous Mater 112:235–242Google Scholar
  48. 48.
    Zubizarreta L, Gomez EI, Arenillas A, Ania CO, Parra JB, Pis JJ (2008) H2 storage in carbon materials. Adsorption 14:557–566Google Scholar
  49. 49.
    Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE (2005) Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J Am Chem Soc 127:16006–16007Google Scholar
  50. 50.
    Yushin G, Dash R, Jagiello J, Fischer JE, Gogotsi Y (2006) Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Adv Funct Mater 16:2288–2293Google Scholar
  51. 51.
    Walton KS, Snurr RQ (2007) Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J Am Chem Soc 129:8552–8556Google Scholar
  52. 52.
    Düren T, Millange F, Férey G, Walton KS, Snurr RQ (2007) Calculating geometric surface areas as a characterization tool for metal-organic frameworks. J Phys Chem C 111(42):15350–15356Google Scholar
  53. 53.
    Frost H, Düren T, Snurr RQ (2006) Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. J Phys Chem B 110:9565–9570Google Scholar
  54. 54.
    Hauback BC (2008) Structural characterization of hydride materials. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, CambridgeGoogle Scholar
  55. 55.
    Yvon K (2003) Hydrogen in novel solid-state metal hydrides. Z Kristallogr 218:108–116Google Scholar
  56. 56.
    Bailey IF (2003) A review of sample environments in neutron scattering. Z Kristallogr 218:84–95Google Scholar
  57. 57.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71Google Scholar
  58. 58.
    Young RA (ed) (1993) The Rietveld method. Oxford University Press, OxfordGoogle Scholar
  59. 59.
    Larson AC, Von Dreele RB (2004) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748Google Scholar
  60. 60.
    Rodriguez-Carvajal J (2001) Recent developments of the program FULLPROF. IUCr Commission on Powder Diffraction Newsletter 26:12–19Google Scholar
  61. 61.
    Choi YN, Oh HS, Em VT, Somenkov VA, Lee C-H, Park SD (2002) Measurement of very small hydrogen content in zirconium alloys by measuring thermal neutron incoherent scattering. Appl Phys A 74:S1710–S1712Google Scholar
  62. 62.
    Perego RC, Blaauw M (2005) Incoherent neutron-scattering determination of hydrogen content: theory and modeling. J Appl Phys 97:123533Google Scholar
  63. 63.
    Squires GL (1978) Introduction to the theory of thermal neutron scattering. Cambridge University Press, CambridgeGoogle Scholar
  64. 64.
    Gray EM, Bailey IF (2008) Embrittlement of titanium-zirconium ‘null-matrix’ alloy by deuterium. J Neutron Res 16(3–4):127–132Google Scholar
  65. 65.
    Bull DJ, Weidner E, Shabalin IL, Telling MTF, Jewell CM, Gregory DH, Ross DK (2010) Pressure-dependent deuterium reaction pathways in the Li-N-D system. Phys Chem Chem Phys 12:2089–2097Google Scholar
  66. 66.
    Yildirim T, Hartman MR (2005) Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks. Phys Rev Lett 95:215504Google Scholar
  67. 67.
    Dincă M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. J Am Chem Soc 128:16876–16883Google Scholar
  68. 68.
    Peterson VK, Liu Y, Brown CM, Kepert CJ (2006) Neutron powder diffraction study of D2 sorption in Cu3(1, 3, 5-benzenetricarboxylate)2. J Am Chem Soc 128:15578–15579Google Scholar
  69. 69.
    Liu Y, Kabbour H, Brown CM, Neumann DA, Ahn CC (2008) Increasing the density of adsorbed hydrogen with coordinatively unsaturated metal centers in metal-organic frameworks. Langmuir 24:4772–4777Google Scholar
  70. 70.
    Brown CM, Liu Y, Neumann DA (2008) Neutron powder diffraction of metal-organic frameworks for hydrogen storage. Pramana J Phys 71(4):755–760Google Scholar
  71. 71.
    Lokshin KA, Zhao Y, He D, Mao WL, Mao H-K, Hemley RJ, Lobanov MV, Greenblatt M (2004) Structure and dynamics of hydrogen molecules in the novel clathrate hydrate by high pressure neutron diffraction. Phys Rev Lett 93(12):125503Google Scholar
  72. 72.
    Gross KJ, Guthrie S, Takara S, Thomas G (2000) In situ X-ray diffraction study of the decomposition of NaAlH4. J Alloy Compd 297:270–281Google Scholar
  73. 73.
    Jensen CM, Gross KJ (2001) Development of catalytically enhanced sodium aluminium hydride as a hydrogen-storage material. Appl Phys A 72:213–219Google Scholar
  74. 74.
    Baldé CP, Hereijgers BPC, Bitter JH, de Jong KP (2008) Sodium alanate nanoparticles—linking size to hydrogen storage properties. J Am Chem Soc 130:6761–6765Google Scholar
  75. 75.
    Huot J, Pelletier JF, Liang G, Sutton M, Schulz R (2002) Structure of nanocomposite metal hydrides. J Alloy Compd 330–332:727–731Google Scholar
  76. 76.
    Jensen TR, Andreasen A, Vegge T, Andreasen JW, Ståhl K, Pedersen AS, Nielsen MM, Molenbroek AM, Besenbacher F (2006) Dehydrogenation kinetics of pure and nickel-doped magnesium hydride investigated by in situ time-resolved powder X-ray diffraction. Int J Hydrogen Energy 31:2052–2062Google Scholar
  77. 77.
    Sun D, Gingl F, Nakamura Y, Enoki H, Bououdina M, Akiba E (2002) In situ X-ray diffraction study of hydrogen-induced phase decomposition in LaMg12 and La2Mg17. J Alloy Compd 333:103–108Google Scholar
  78. 78.
    Narehood DG, Kishore S, Goto H, Adair JH, Nelson JA, Gutiérrez HR, Eklund PC (2009) X-ray diffraction and H-storage in ultra-small palladium particles. Int J Hydrogen Energy 34:952–960Google Scholar
  79. 79.
    Phan T-H, Schaak RE (2009) Polyol synthesis of palladium hydride: bulk powders vs. nanocrystals. Chem Commun 3026–3028Google Scholar
  80. 80.
    Mosegaard L, Møller B, Jørgensen J-E, Filinchuk Y, Cerenius Y, Hanson JC, Dimasi E, Besenbacher F, Jensen TR (2008) Reactivity of LiBH4: in situ synchrotron radiation X-ray diffraction study. J Phys Chem C 112(4):1299–1303Google Scholar
  81. 81.
    Riktor MD, Sørby MH, Chłopek K, Fichtner M, Buchter F, Züttel A, Hauback BC (2007) In situ synchrotron diffraction studies of phase transitions and thermal decomposition of Mg(BH4)2 and Ca(BH4)2. J Mater Chem 17:4939–4942Google Scholar
  82. 82.
    Brinks HW, Hauback BC, Norby P, Fjellvåg H (2003) The decomposition of LiAlD4 studied by in situ X-ray and neutron diffraction. J Alloy Compd 351:222–227Google Scholar
  83. 83.
    Blanchard D, Brinks HW, Hauback BC, Norby P (2004) Desorption of LiAlH4 with Ti- and V-based additives. Mater Sci Eng B 108:54–59Google Scholar
  84. 84.
    Fossdal A, Brinks HW, Fichtner M, Hauback BC (2005) Thermal decomposition of Mg(AlH4)2 studied by in situ synchrotron X-ray diffraction. J Alloy Compd 404–406:752–756Google Scholar
  85. 85.
    Maehlen JP, Yartys VA, Denys RV, Fichtner M, Frommen C, Bulychev BM, Pattison P, Emerich H, Filinchuk YE, Chernyshov D (2007) Thermal decomposition of AlH3 studied by in situ synchrotron X-ray diffraction and thermal desorption spectroscopy. J Alloy Compd 446–447:280–289Google Scholar
  86. 86.
    Huot J, Pelletier JF, Lurio LB, Sutton M, Schulz R (2003) Investigation of dehydrogenation mechanism of MgH2-Nb nanocomposites. J Alloy Compd 348:319–324Google Scholar
  87. 87.
    Yavari AR, de Castro JFR, Vaughan G, Heunen G (2003) Structural evolution and metastable phase detection in MgH2–5%NbH nanocomposite during in situ H-desorption in a synchrotron beam. J Alloy Compd 353:246–251Google Scholar
  88. 88.
    Denys RV, Riabov AB, Maehlen JP, Lototsky MV, Solberg JK, Yartys VA (2009) In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg-Mm-Ni after reactive ball milling in hydrogen. Acta Mater 57:3989–4000Google Scholar
  89. 89.
    Bösenberg U, Doppiu S, Mosegaard L, Barkhordarian G, Eigen N, Borgschulte A, Jensen TR, Cerenius Y, Gutfleisch O, Klassen T, Dornheim M, Bormann R (2007) Hydrogen sorption properties of MgH2-LiBH4 composites. Acta Mater 55:3951–3958Google Scholar
  90. 90.
    Nakamura Y, Hino S, Ichikawa T, Fujii H, Brinks HW, Hauback BC (2008) Dehydrogenation reaction of Li-Mg-N-H systems studied by in situ synchrotron powder X-ray diffraction and powder neutron diffraction. J Alloy Compd 457:362–367Google Scholar
  91. 91.
    Joubert J-M, Černý R, Latroche M, Percheron-Guégan A, Schmitt B (2006) Hydrogenation of LaNi5 studied by in situ synchrotron powder diffraction. Acta Mater 54:713–719Google Scholar
  92. 92.
    Stange M, Maehlen JP, Yartys VA, Norby P, van Beek W, Emerich H (2005) In situ SR-XRD studies of hydrogen absorption-desorption in LaNi4.7Sn0.3. J Alloy Compd 404–406:604–608Google Scholar
  93. 93.
    Gray EM, Cookson DJ, Blach TP (2006) X-ray diffraction cell for studying solid-gas reactions under gas pressures to 100 bar. J Appl Crystallogr 39:850–855Google Scholar
  94. 94.
    Černý R, Joubert J-M, Latroche M, Percheron-Guégan A, Yvon K (2000) Anisotropic diffraction peak broadening and dislocation substructure in hydrogen-cycled LaNi5 and substitutional derivatives. J Appl Crystallogr 33:997–1005Google Scholar
  95. 95.
    Fratzl P (2003) Small-angle scattering in materials science—a short review of applications in alloys, ceramics and composite materials. J Appl Crystallogr 36:397–404Google Scholar
  96. 96.
    Simon J-P (2007) Contribution of synchrotron radiation to small-angle X-ray scattering studies in hard condensed matter. J Appl Crystallogr 40:S1–S9Google Scholar
  97. 97.
    Melnichenko YB, Wignall GD (2007) Small-angle neutron scattering in materials science: recent practical applications. J Appl Phys 102:021101Google Scholar
  98. 98.
    Sharp MA, Pranzas PK, Schreyer A (2009) Going ultra: how we can increase the length scales studied in small-angle neutron scattering. Adv Eng Mater 11(6):441–445Google Scholar
  99. 99.
    Orimo S, Seto H, Ikeda K, Nagao M, Fujii H (1996) Small angle neutron scattering measurements of a nanostructured Mg2Ni-D system. Physica B 226:370–374Google Scholar
  100. 100.
    Orimo S, Fujii H (2001) Materials science of Mg-Ni-based new hydrides. Appl Phys A 72:167–186Google Scholar
  101. 101.
    Fultz B, Witham CK, Udovic TJ (2002) Distributions of hydrogen and strains in LaNi5 and LaNi4.75Sn0.25. J Alloy Compd 335:165–175Google Scholar
  102. 102.
    Bowman RC, Fultz B (2002) Metallic hydrides 1: hydrogen storage and other gas-phase applications. MRS Bull 27(9):688–693Google Scholar
  103. 103.
    Flanagan TB, Noh H, Clewley JD, Barker JG (1998) Evidence from SANS and H2 solubilities for H-enhanced metal atom diffusion in Pd-Ni alloys. Scr Mater 39(11):1607–1611Google Scholar
  104. 104.
    Heuser BJ, King JS (1997) SANS measurements of deuterium-dislocation trapping in deformed single crystal Pd. J Alloy Compd 261:225–230Google Scholar
  105. 105.
    Ross DK, Stefanopoulos K, Kemali M (1999) The use of small angle neutron scattering in the study of hydrogen trapping at defects in metals. J Alloy Compd 293–295:346–350Google Scholar
  106. 106.
    Maxelon M, Pundt A, Pyckhout-Hintzen W, Barker J, Kirchheim R (2001) Interaction of hydrogen and deuterium with dislocations in palladium as observed by small angle neutron scattering. Acta Mater 49:2625–2634Google Scholar
  107. 107.
    Heuser BJ, King JS, Chen WC (1999) SANS measurements of deuteride (hydride) formation in single crystal Pd. J Alloy Compd 292:134–147Google Scholar
  108. 108.
    Chen WC, Heuser BJ, King JS (2000) Small-angle neutron scattering investigation of deuteride (hydride) precipitation and decomposition in single-crystal Pd. J Appl Crystallogr 33:442–446Google Scholar
  109. 109.
    Pranzas PK, Dornheim M, Bellmann D, Aguey-Zinsou K-F, Klassen T, Schreyer A (2006) SANS/USANS investigations of nanocrystalline MgH2 for reversible storage of hydrogen. Physica B 385–386:630–632Google Scholar
  110. 110.
    Pranzas PK, Dornheim M, Bösenberg U, Fernandez JRA, Goerigk G, Roth SV, Gehrke R, Schreyer A (2007) Small-angle scattering investigations of magnesium hydride used as a hydrogen storage material. J Appl Crystallogr 40:S383–S387Google Scholar
  111. 111.
    Dobbins TA, Bruster EL, Oteri EU, Ilavsky J (2007) Ultrasmall-angle X-ray scattering (USAXS) studies of morphological trends in high energy milled NaAlH4 powders. J Alloy Compd 446–447:248–254Google Scholar
  112. 112.
    Sartori S, Knudsen KD, Zhao-Karger Z, Bardaij EG, Fichtner M, Hauback BC (2009) Small-angle scattering investigations of Mg-borohydride infiltrated in activated carbon. Nanotechnology 20:505702Google Scholar
  113. 113.
    Sheppard DA, Maitland CF, Buckley CE (2005) Preliminary results of hydrogen adsorption and SAXS modelling of mesoporous silica: MCM-41. J Alloy Compd 404–406:405–408Google Scholar
  114. 114.
    Laudisio G, Dash RK, Singer JP, Yushin G, Gogotsi Y, Fischer JE (2006) Carbide-derived carbons: a comparative study of porosity based on small-angle scattering and adsorption isotherms. Langmuir 22:8945–8950Google Scholar
  115. 115.
    Du X, Wu E (2007) Porosity of microporous zeolites A, X and ZSM-5 studied by small angle X-ray scattering and nitrogen adsorption. J Phys Chem Solids 68:1692–1699Google Scholar
  116. 116.
    Tsao C-S, Yu M-S, Chung T-Y, Wu H-C, Wang C-Y, Chang K-S, Chen H-L (2007) Characterization of pore structure in metal-organic framework by small-angle X-ray scattering. J Am Chem Soc 129:15997–16004Google Scholar
  117. 117.
    Fultz B (2006) Materials science applications of inelastic neutron scattering. JOM 58(3):58–63Google Scholar
  118. 118.
    Parker SF (2010) Spectroscopy and bonding in ternary metal hydride complexes—potential hydrogen storage media. Coord Chem Rev 254:215–234Google Scholar
  119. 119.
    Ross DK (2008) Neutron scattering studies for analysing solid-state hydrogen storage. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, CambridgeGoogle Scholar
  120. 120.
    Fukai Y (2005) The metal-hydrogen system. Basic bulk properties, 2nd edn. Springer, BerlinGoogle Scholar
  121. 121.
    Neumann D (2006) Neutron scattering and hydrogenous materials. Mater Today 9(1–2):34–41Google Scholar
  122. 122.
    Ramirez-Cuesta AJ, Jones MO, David WIF (2009) Neutron scattering and hydrogen storage. Mater Today 12(11):54–61Google Scholar
  123. 123.
    Kearley GJ, Johnson MR (2010) Vibrational spectroscopy with neutrons—where are we now? Vib Spectrosc 53:54–59Google Scholar
  124. 124.
    Parker SF, Williams KPJ, Bortz M, Yvon K (1997) Inelastic neutron scattering, infrared, and Raman spectroscopic studies of Mg2FeH6 and Mg2FeD6. Inorg Chem 36:5218–5221Google Scholar
  125. 125.
    Parker SF, Jayasooriya UA, Sprunt JC, Bortz M, Yvon K (1998) Inelastic neutron scattering, IR and Raman spectroscopic studies of Mg2CoH5 and Mg2CoD5. J Chem Soc Faraday Trans 94(17):2595–2599Google Scholar
  126. 126.
    Olofsson-Mårtensson M, Häussermann U, Tomkinson J, Noréus D (2000) Stabilization of electron-dense palladium–hydrido complexes in solid-state hydrides. J Am Chem Soc 122:6960–6970Google Scholar
  127. 127.
    Parker SF, Bennington SM, Ramirez-Cuesta AJ, Auffermann G, Bronger W, Herman H, Williams KPJ, Smith T (2003) Inelastic neutron scattering and Raman spectroscopies and periodic DFT studies of Rb2PtH6 and Rb2PtD6. J Am Chem Soc 125:11656–11661Google Scholar
  128. 128.
    Parker SF, Refson K, Williams KPJ, Braden DA, Hudson BS, Yvon K (2006) Spectroscopic and ab initio characterization of the [ReH9]2− ion. Inorg Chem 45(26):10951–10957Google Scholar
  129. 129.
    Schimmel HG, Johnson MR, Kearley GJ, Ramirez-Cuesta AJ, Huot J, Mulder FM (2005) Structural information on ball milled magnesium hydride from vibrational spectroscopy and ab initio calculations. J Alloy Compd 393:1–4Google Scholar
  130. 130.
    Schimmel HG, Johnson MR, Kearley GJ, Ramirez-Cuesta AJ, Huot J, Mulder FM (2004) The vibrational spectrum of magnesium hydride from inelastic neutron scattering and density functional theory. Mater Sci Eng B 108:38–41Google Scholar
  131. 131.
    Fu QJ, Ramirez-Cuesta AJ, Tsang SC (2006) Molecular aluminium hydrides identified by inelastic neutron scattering during H2 regeneration of catalyst-doped NaAlH4. J Phys Chem B 110:711–715Google Scholar
  132. 132.
    Allis DG, Hudson BS (2004) Inelastic neutron scattering spectra of NaBH4 and KBH4: reproduction of anion mode shifts via periodic DFT. Chem Phys Lett 385:166–172Google Scholar
  133. 133.
    Hartman MR, Rush JJ, Udovic TJ, Bowman RC, Hwang S-J (2007) Structure and vibrational dynamics of isotopically labeled lithium borohydride using neutron diffraction and spectroscopy. J Solid State Chem 180:1298–1305Google Scholar
  134. 134.
    Mulder FM, Dingemans TJ, Schimmel HG, Ramirez-Cuesta AJ, Kearley GJ (2008) Hydrogen adsorption strength and sites in the metal organic framework MOF5: comparing experiment and model calculations. Chem Phys 351(1–3):72–76Google Scholar
  135. 135.
    Brown CM, Liu Y, Yildirim T, Peterson VK, Kepert CJ (2009) Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study. Nanotechnology 20:204025Google Scholar
  136. 136.
    Nouar F, Eckert J, Eubank JF, Forster P, Eddaoudi M (2009) Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen storage platform: lithium and magnesium ion-exchange and H2-(rho-ZMOF) interaction studies. J Am Chem Soc 131:2864–2870Google Scholar
  137. 137.
    Ramirez-Cuesta AJ, Mitchell PCH (2007) Hydrogen adsorption in a copper ZSM5 zeolite: an inelastic neutron scattering study. Catal Today 120:368–373Google Scholar
  138. 138.
    Ramirez-Cuesta AJ, Mitchell PCH, Ross DK, Georgiev PA, Anderson PA, Langmi HW, Book D (2007) Dihydrogen in cation-substituted zeolites X—an inelastic neutron scattering study. J Mater Chem 17:2533–2539Google Scholar
  139. 139.
    Schimmel HG, Kearley GJ, Nijkamp MG, Visser CT, de Jong KP, Mulder FM (2003) Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. Chem Eur J 9:4764–4770Google Scholar
  140. 140.
    Georgiev PA, Ross DK, De Monte A, Montaretto-Marullo U, Edwards RAH, Ramirez-Cuesta AJ, Colognesi D (2004) Hydrogen site occupancies in single-walled carbon nanotubes studied by inelastic neutron scattering. J Phys Condens Matter 16:L73–L78Google Scholar
  141. 141.
    Georgiev PA, Ross DK, De Monte A, Montaretto-Marullo U, Edwards RAH, Ramirez-Cuesta AJ, Adams MA, Colognesi D (2005) In situ inelastic neutron scattering studies of the rotational and translational dynamics of molecular hydrogen adsorbed in single-wall carbon nanotubes (SWNTs). Carbon 43:895–906Google Scholar
  142. 142.
    Georgiev PA, Ross DK, Albers P, Ramirez-Cuesta AJ (2006) The rotational and translational dynamics of molecular hydrogen physisorbed in activated carbon: a direct probe of microporosity and hydrogen storage performance. Carbon 44:2724–2738Google Scholar
  143. 143.
    Fernandez-Alonso F, Bermejo FJ, Cabrillo C, Loutfy RO, Leon V, Saboungi ML (2007) Nature of the bound states of molecular hydrogen in carbon nanohorns. Phys Rev Lett 98:215503Google Scholar
  144. 144.
    Tait KT, Trouw F, Zhao Y, Brown CM, Downs RT (2007) Inelastic neutron scattering study of hydrogen in d 8-THF/D2O ice clathrate. J Chem Phys 127:134505Google Scholar
  145. 145.
    Ulivi L, Celli M, Giannasi A, Ramirez-Cuesta AJ, Bull DJ, Zoppi M (2007) Quantum rattling of molecular hydrogen in clathrate hydrate nanocavities. Phys Rev B 76:161401Google Scholar
  146. 146.
    Ulivi L, Celli M, Giannasi A, Ramirez-Cuesta AJ, Zoppi M (2008) Inelastic neutron scattering from hydrogen clathrate hydrates. J Phys Condens Matter 20:104242Google Scholar
  147. 147.
    Parker SF (2002) The design and performance of the indirect geometry spectrometer TOSCA. J Neutron Res 10(3–4):173–177Google Scholar
  148. 148.
    Colognesi D, Celli M, Cilloco F, Newport RJ, Parker SF, Rossi-Albertini V, Sacchetti F, Tomkinson J, Zoppi M (2002) TOSCA neutron spectrometer: the final configuration. Appl Phys A 74:S64–S66Google Scholar
  149. 149.
    Chudley CT, Elliott RJ (1961) Neutron scattering from a liquid on a jump diffusion model. Proc Phys Soc 77(2):353–361Google Scholar
  150. 150.
    Kahn R, Cohen De Lara E, Viennet E (1989) Diffusivity of the hydrogen molecule sorbed in NaA zeolite by a neutron scattering experiment. J Chem Phys 91(8):5097–5102Google Scholar
  151. 151.
    Bär N-K, Ernst H, Jobic H, Kärger J (1999) Combined quasi-elastic neutron scattering and NMR study of hydrogen diffusion in zeolites. Magn Reson Chem 37:S79–S83Google Scholar
  152. 152.
    Jobic H, Kärger J, Bée M (1999) Simultaneous measurement of self- and transport diffusivities in zeolites. Phys Rev Lett 82(21):4260–4263Google Scholar
  153. 153.
    Kumar AVA, Jobic H, Bhatia SK (2006) Quantum effects on adsorption and diffusion of hydrogen and deuterium in microporous materials. J Phys Chem B 110:16666–16671Google Scholar
  154. 154.
    Pantatosaki E, Papadopoulos GK, Jobic H, Theodorou DN (2008) Combined atomistic simulation and quasielastic neutron scattering study of the low-temperature dynamics of hydrogen and deuterium confined in NaX zeolite. J Phys Chem B 112:11708–11715Google Scholar
  155. 155.
    Salles F, Jobic H, Maurin G, Koza MM, Llewellyn PL, Devic T, Serre C, Ferey G (2008) Experimental evidence supported by simulations of a very high H2 diffusion in metal organic framework materials. Phys Rev Lett 100:245901Google Scholar
  156. 156.
    Salles F, Kolokolov DI, Jobic H, Maurin G, Llewellyn PL, Devic T, Serre C, Ferey G (2009) Adsorption and diffusion of H2 in the MOF type systems MIL-47(V) and MIL-53(Cr): a combination of microcalorimetry and QENS experiments with molecular simulations. J Phys Chem C 113:7802–7812Google Scholar
  157. 157.
    Benes NE, Jobic H, Réat V, Bouwmeester HJM, Verweij H (2003) Mobility of hydrogen in microporous silica studied with quasi-elastic neutron scattering. Sep Purif Technol 32:9–15Google Scholar
  158. 158.
    Voss J, Shi Q, Jacobsen HS, Zamponi M, Lefmann K, Vegge T (2007) Hydrogen dynamics in Na3AlH6: a combined density functional theory and quasielastic neutron scattering study. J Phys Chem B 111:3886–3892Google Scholar
  159. 159.
    Shi Q, Voss J, Jacobsen HS, Lefmann K, Zamponi M, Vegge T (2007) Point defect dynamics in sodium aluminium hydrides–a combined quasielastic neutron scattering and density functional theory study. J Alloy Compd 446–447:469–473Google Scholar
  160. 160.
    Bull DJ, Broom DP, Ross DK (2003) Monte Carlo simulation of quasielastic neutron scattering from localised and long-range hydrogen motion in C15 Laves phase intermetallic compounds. Chem Phys 292:153–160Google Scholar
  161. 161.
    Skripov AV (2005) Hydrogen jump motion in Laves-phase hydrides: two frequency scales. J Alloy Compd 404–406:224–229Google Scholar
  162. 162.
    Skripov AV, Gonzalez MA, Hempelmann R (2006) Evidence for a two-site localized hydrogen motion in C15-type YMn2Hx. J Phys Condens Matter 18:7249–7256Google Scholar
  163. 163.
    Skripov AV, Udovic TJ, Rush JJ (2007) Hydrogen jump diffusion in C14-type ZrMn2H3: quasielastic neutron scattering study. Phys Rev B 76:104305Google Scholar
  164. 164.
    Skripov AV, Gonzalez MA, Hempelmann R (2008) Localized hydrogen motion in C15-type TaV2H0.65: temperature dependence of the H jump rate. J Phys Condens Matter 20:085213Google Scholar
  165. 165.
    Richter D, Hempelmann R, Vinhas LA (1982) Hydrogen diffusion in LaNi5H6 studied by quasi-elastic neutron scattering. J Less-Common Met 88:353–360Google Scholar
  166. 166.
    Cotts RM (1978) Nuclear magnetic resonance on metal-hydrogen systems. In: Alefeld G, Völkl J (eds) Topics in applied physics vol. 28: hydrogen in metals I. Basic properties. Springer, BerlinGoogle Scholar
  167. 167.
    Bogdanović B, Felderhoff M, Germann M, Härtel M, Pommerin A, Schüth F, Weidenthaler C, Zibrowius B (2003) Investigation of hydrogen discharging and recharging processes of Ti-doped NaAlH4 by X-ray diffraction analysis (XRD) and solid-state NMR spectroscopy. J Alloy Compd 350:246–255Google Scholar
  168. 168.
    Herberg JL, Maxwell RS, Majzoub EH (2006) 27Al and 1H MAS NMR and 27Al multiple quantum studies of Ti-doped NaAlH4. J Alloy Compd 417:39–44Google Scholar
  169. 169.
    Balema VP, Wiench JW, Dennis KW, Pruski M, Pecharsky VK (2001) Titanium catalyzed solid-state transformations in LiAlH4 during high-energy ball-milling. J Alloy Compd 329:108–114Google Scholar
  170. 170.
    Wiench JW, Balema VP, Pecharsky VK, Pruski M (2004) Solid-state 27Al NMR investigation of thermal decomposition of LiAlH4. J Solid State Chem 177:648–653Google Scholar
  171. 171.
    Hu JZ, Kwak JH, Yang Z, Osborn W, Markmaitree T, Shaw LL (2008) Probing the reaction pathway of dehydrogenation of the LiHH2 + LiH mixture using in situ 1H NMR spectroscopy. J Power Sources 181:116–119Google Scholar
  172. 172.
    Richter D, Hempelmann R, Bowman RC (1992) Dynamics of hydrogen in intermetallic hydrides. In: Schlapbach L (ed) Topics in applied physics vol. 67: hydrogen in intermetallic compounds II. Surface and dynamic properties. Springer-verlag, BerlinGoogle Scholar
  173. 173.
    Ailion DC, Ohlsen WD (1983) Magnetic resonance methods for studying defect structure in solids. In: Mundy JN (ed) Solid state: nuclear methods. Methods of experimental physics, vol 21. Academic Press, OrlandoGoogle Scholar
  174. 174.
    Ailion DC (1983) Nuclear magnetic resonance relaxation time methods for studying atomic and molecular motions in solids. In: Mundy JN (ed) Solid state: nuclear methods. Methods of experimental physics, vol 21. Academic Press, OrlandoGoogle Scholar
  175. 175.
    Gerstein BC, Dybowski CR (1985) Transient techniques in NMR of solids: an introduction to theory and practice. Academic Press, OrlandoGoogle Scholar
  176. 176.
    Phua T-T, Beaudry BJ, Peterson DT, Torgeson DR, Barnes RG, Belhoul M, Styles GA, Seymour EFW (1983) Paramagnetic impurity effects in NMR determinations of hydrogen diffusion and electronic structure in metal hydrides. Gd3+ in YH2 and LaH2.25. Phys Rev B 28(11):6227–6250Google Scholar
  177. 177.
    Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73(7):679–712Google Scholar
  178. 178.
    McDowell AF, Adolphi NL, Sholl CA (2001) Site and barrier energy distributions that govern the rate of hydrogen motion in quasicrystalline Ti45Zr38Ni17Hx. J Phys Condens Matter 13:9799–9812Google Scholar
  179. 179.
    Baker DB, Conradi MS (2005) Apparatus for high temperatures and intermediate pressures, for in situ nuclear magnetic resonance of hydrogen storage systems. Rev Sci Instrum 76:073906Google Scholar
  180. 180.
    Majer G, Stanik E, Orimo S (2003) NMR studies of hydrogen motion in nanostructured hydrogen-graphite systems. J Alloy Compd 356–357:617–621Google Scholar
  181. 181.
    Majer G, Eberle U, Kimmerle F, Stanik E, Orimo S (2003) Hydrogen diffusion in metallic and nanostructured materials. Physica B 328:81–89Google Scholar
  182. 182.
    Stanik E, Majer G, Orimo S, Ichikawa T, Fujii H (2005) Nuclear-magnetic-resonance measurements of the hydrogen dynamics in nanocrystalline graphite. J Appl Phys 98:044302Google Scholar
  183. 183.
    Bowman RC, Maeland AJ (1981) NMR studies of diffusion in the metallic glass TiCuHx. Phys Rev B 24(5):2328–2333Google Scholar
  184. 184.
    Bowman RC, Attalla A, Maeland AJ, Johnson WL (1983) Hydrogen mobility in crystalline and amorphous Zr2PdHx. Solid State Commun 47(10):779–782Google Scholar
  185. 185.
    Buzlukov AL, Skripov AV (2004) Nuclear magnetic resonance study of hydrogen motion in C15-type TaV2Hx (x ≤ 0.18). J Alloy Compd 366:61–66Google Scholar
  186. 186.
    Bowman RC, Gruen DM, Mendelsohn MH (1979) NMR studies of hydrogen diffusion in β-LaNi5-yAly hydrides. Solid State Commun 32:501–506Google Scholar
  187. 187.
    Bowman RC, Craft BD, Attalla A, Mendelsohn MH, Gruen DM (1980) Role of aluminum substitution on hydrogen diffusion in β-LaNi5-yAlyHx. J Less-Common Met 73:227–232Google Scholar
  188. 188.
    Mendenhall MP, Bowman RC, Ivancic TM, Conradi MS (2007) Rate of hydrogen motion in Ni-substituted LaNi5Hx from NMR. J Alloy Compd 446–447:495–498Google Scholar
  189. 189.
    Corey RL, Ivancic TM, Shane DT, Carl EA, Bowman RC, Bellosta von Colbe JM, Dornheim M, Bormann R, Huot J, Zidan R, Stowe AC, Conradi MS (2008) Hydrogen motion in magnesium hydride by NMR. J Phys Chem C 112:19784–19790Google Scholar
  190. 190.
    Conradi MS, Mendenhall MP, Ivancic TM, Carl EA, Browning CD, Notten PHL, Kalisvaart WP, Magusin PCMM, Bowman RC, Hwang S-J, Adolphi NL (2007) NMR to determine rates of motion and structures in metal-hydrides. J Alloy Compd 446–447:499–503Google Scholar
  191. 191.
    Magusin PCMM, Kalisvaart WP, Notten PHL, van Santen RA (2008) Hydrogen sites and dynamics in light-weight hydrogen-storage material magnesium-scandium hydride investigated with 1H and 2H NMR. Chem Phys Lett 456:55–58Google Scholar
  192. 192.
    Shane DT, Corey RL, Bowman RC, Zidan R, Stowe AC, Hwang S-J, Kim C, Conradi MS (2009) NMR studies of the hydrogen storage compound NaMgH3. J Phys Chem C 113:18414–18419Google Scholar
  193. 193.
    Grinberg F, Majer G, Skripov AV (2006) Pulsed-field-gradient NMR study of hydrogen diffusivity in random b.c.c. alloys VyTa1-y. J Alloy Compd 425:24–27Google Scholar
  194. 194.
    Shastri A, Majzoub EH, Borsa F, Gibbons PC, Kelton KF (1998) 1H NMR study of hydrogen in quasicrystalline Ti0.45-xVxZr0.38Ni0.17. Phys Rev B 57(9):5148–5153Google Scholar
  195. 195.
    Shastri A, Majzoub EH, Borsa F, Gibbons PC, Kelton KF (1999) Erratum: 1H NMR study of hydrogen in quasicrystalline Ti0.45-xVxZr0.38Ni0.17 [Phys. Rev. B 57 5148 (1998)]. Phys Rev B 59(21):14108Google Scholar
  196. 196.
    Majer G, Stanik E, Valiente Banuet LE, Grinberg F, Kircher O, Fichtner M (2005) Effects of catalysts on the dehydriding of alanates monitored by proton NMR. J Alloy Compd 404–406:738–742Google Scholar
  197. 197.
    Senadheera L, Conradi MS (2007) Rotation and diffusion of H2 in hydrogen-ice clathrate by 1H NMR. J Phys Chem B 111:12097–12102Google Scholar
  198. 198.
    Senadheera L, Conradi MS (2008) Hydrogen nuclear spin relaxation in hydrogen-ice clathrate. J Phys Chem A 112:8303–8309Google Scholar
  199. 199.
    Senadheera L, Conradi MS (2008) Hydrogen NMR of H2-TDF-D2O clathrate. J Phys Chem B 112:13695–13700Google Scholar
  200. 200.
    Strobel TA, Taylor CJ, Hester KC, Dec SF, Koh CA, Miller KT, Sloan ED (2006) Molecular hydrogen storage in binary THF-H2 clathrate hydrates. J Phys Chem B 110:17121–17125Google Scholar
  201. 201.
    Garrone E, Rodríguez Delgado M, Bonelli B, Otero Areán C (2005) Ferreting out gas adsorption heats: the pseudo-isobaric method. Phys Chem Chem Phys 7:3519–3522Google Scholar
  202. 202.
    Otero Areán C, Manoilova OV, Tsyganenko AA, Turnes Palomino G, Peñarroya Mentruit M, Geobaldo F, Garrone E (2001) Thermodynamics of hydrogen bonding between CO and the supercage brønsted acid sites of the H-Y zeolite—studies from variable temperature IR spectrometry. Eur J Inorg Chem 2001(7):1739–1743Google Scholar
  203. 203.
    Tsyganenko AA, Storozhev PY, Otero Areán C (2004) IR-spectroscopic study of the binding isomerism of adsorbed molecules. Kinet Catal 45(4):562–573Google Scholar
  204. 204.
    Garrone E, Otero Areán C (2005) Variable temperature infrared spectroscopy: a convenient tool for studying the thermodynamics of weak solid-gas interactions. Chem Soc Rev 34:846–857Google Scholar
  205. 205.
    Otero Areán C, Manoilova OV, Turnes Palomino G, Rodríguez Delgado M, Tsyganenko AA, Bonelli B, Garrone E (2002) Variable-temperature infrared spectroscopy: an access to adsorption thermodynamics of weakly interacting systems. Phys Chem Chem Phys 4:5713–5715Google Scholar
  206. 206.
    Garrone E, Bonelli B, Otero Areán C (2008) Enthalpy-entropy correlation for hydrogen adsorption on zeolites. Chem Phys Lett 456:68–70Google Scholar
  207. 207.
    Otero Areán C, Turnes Palomino G, Llop Carayol MR (2007) Variable temperature FT-IR studies on hydrogen adsorption on the zeolite (Mg, Na)-Y. Appl Surf Sci 253:5701–5704Google Scholar
  208. 208.
    Spoto G, Vitillo JG, Cocina D, Damin A, Bonino F, Zecchina A (2007) FTIR spectroscopy and thermodynamics of hydrogen adsorbed in a cross-linked polymer. Phys Chem Chem Phys 9:4992–4999Google Scholar
  209. 209.
    Vitillo JG, Regli L, Chavan S, Ricchiardi G, Spoto G, Dietzel PDC, Bordiga S, Zecchina A (2008) Role of exposed metal sites in hydrogen storage in MOFs. J Am Chem Soc 130:8386–8396Google Scholar
  210. 210.
    Kleperis J, Wójcik G, Czerwinski A, Skowronski J, Kopczyk M, Beltowska-Brzezinska M (2001) Electrochemical behaviour of metal hydrides. J Solid State Electrochem 5:229–249Google Scholar
  211. 211.
    Iwakura C, Inoue H, Nohara S (2001) Hydrogen-metal systems: electrochemical reactions (fundamentals and applications). In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner MC, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology. Elsevier, AmsterdamGoogle Scholar
  212. 212.
    Züttel A, Sudan P, Mauron P, Kiyobayashi T, Emmenegger C, Schlapbach L (2002) Hydrogen storage in carbon nanostructures. Int J Hydrogen Energy 27:203–212Google Scholar
  213. 213.
    Züttel A, Nützenadel C, Sudan P, Mauron P, Emmenegger C, Rentsch S, Schlapbach L, Weidenkaff A, Kiyobayashi T (2002) Hydrogen sorption by carbon nanotubes and other carbon nanostructures. J Alloy Compd 330–332:676–682Google Scholar
  214. 214.
    Ansón A, Benham M, Jagiello J, Callejas MA, Benito AM, Maser WK, Züttel A, Sudan P, Martínez MT (2004) Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques. Nanotechnology 15:1503–1508Google Scholar
  215. 215.
    Bittner HF, Badcock CC (1983) Electrochemical utilization of metal hydrides. J Electrochem Soc 130(5):193C–198CGoogle Scholar
  216. 216.
    Feng F, Geng M, Northwood DO (2001) Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review. Int J Hydrogen Energy 26:725–734Google Scholar
  217. 217.
    Bliznakov S, Lefterova E, Dimitrov N (2008) Electrochemical PCT isotherm study of hydrogen absorption/desorption in AB5 type intermetallic compounds. Int J Hydrogen Energy 33:5789–5794Google Scholar
  218. 218.
    Shirai Y, Araki H, Mori T, Nakamura W, Sakaki K (2002) Positron annihilation study of lattice defects induced by hydrogen absorption in some hydrogen storage materials. J Alloy Compd 330–332:125–131Google Scholar
  219. 219.
    Sakaki K, Akiba E, Mizuno M, Araki H, Shirai Y (2009) The effect of substitutional elements (Al, Co) in LaNi4.5M0.5 on the lattice defect formation in the initial hydrogenation and dehydrogenation. J Alloy Compd 473(1–2):87–93Google Scholar
  220. 220.
    Kim G-H, Chun C-H, Lee S-G, Lee J-Y (1994) TEM study on the nucleation and growth of hydride in LaNi5 alloy. Acta Metall Mater 42(9):3157–3161Google Scholar
  221. 221.
    Kim G-H, Lee S-G, Lee K-Y, Chun C-H, Lee J-Y (1995) Observation of the defects induced by hydrogen absorption and desorption in LaNi5. Acta Metall Mater 43(6):2233–2240Google Scholar
  222. 222.
    Décamps B, Joubert J-M, Cerny R, Percheron-Guégan A (2005) TEM study of the dislocations generated by hydrogen absorption/desorption in LaNi5 and derivatives. J Alloy Compd 404–406:570–575Google Scholar
  223. 223.
    Inui H, Yamamoto T, Hirota M, Yamaguchi M (2002) Lattice defects introduced during hydrogen absorption-desorption cycles and their effects on P-C characteristics in some intermetallic compounds. J Alloy Compd 330–332:117–124Google Scholar
  224. 224.
    Beattie SD, Humphries T, Weaver L, McGrady GS (2008) Temporal and spatial imaging of hydrogen storage materials: watching solvent and hydrogen desorption from aluminium hydride by transmission electron microscopy. Chem Commun 4448–4450Google Scholar
  225. 225.
    Ikeda K, Muto S, Tatsumi K, Menjo M, Kato S, Bielmann M, Züttel A, Jensen CM, Orimo S (2009) Dehydriding reaction of AlH3: in situ microscopic observations combined with thermal and surface analyses. Nanotechnology 20:204004Google Scholar
  226. 226.
    Muto S, Tatsumi K, Ikeda K, Orimo S (2009) Dehydriding process of α-AlH3 observed by transmission electron microscopy and electron energy-loss spectroscopy. J Appl Phys 105:123514Google Scholar
  227. 227.
    Kim JW, Ahn J-P, Kim DH, Chung H-S, Shim J-H, Cho YW, Oh KH (2010) In situ transmission electron microscopy study on microstructural changes in NbF5-doped MgH2 during dehydrogenation. Scr Mater 62:701–704Google Scholar
  228. 228.
    Beattie SD, McGrady GS (2009) Hydrogen desorption studies of NaAlH4 and LiAlH4 by in situ heating in an ESEM. Int J Hydrogen Energy 34:9151–9156Google Scholar
  229. 229.
    Palumbo O, Cantelli R, Paolone A, Jensen CM, Srinivasan SS (2005) Point defect dynamics and evolution of chemical reactions in alanates by anelastic spectroscopy. J Phys Chem B 109:1168–1173Google Scholar
  230. 230.
    Palumbo O, Paolone A, Cantelli R, Jensen CM, Sulic M (2006) Fast H-vacancy dynamics during alanate decomposition by anelastic spectroscopy. Proposition of a model for Ti-enhanced hydrogen transport. J Phys Chem B 110:9105–9111Google Scholar
  231. 231.
    Palumbo O, Paolone A, Rispoli P, Cantelli R (2009) Novel materials for solid-state hydrogen storage: anelastic spectroscopy studies. Mater Sci Eng A 521–522:134–138Google Scholar

Copyright information

©  Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Hiden Isochema LtdWarringtonUK

Personalised recommendations