Potential Storage Materials

  • Darren P. Broom
Part of the Green Energy and Technology book series (GREEN)


This chapter presents an overview of the various materials that are currently being considered as potential solid state storage media. We concentrate on the physical and chemical properties of the materials relevant for the characterisation of their hydrogen storage properties and their practical use in storage devices, as opposed to the materials synthesis methods. The chapter looks first at microporous materials, including activated and nanostructured carbons, zeolites, organic microporous polymers and metal-organic frameworks. Secondly, we cover the alloys and intermetallic compounds that form interstitial hydrides at practical storage temperatures and hydrogen pressures. The complex hydrides, including alanates and lithium-based materials, such as LiNH2 and LiBH4, are then discussed before concluding with a look at some materials that do not fit readily into the above categories.


Hydrogen Storage Solid Solution Alloy Hydrogen Storage Capacity Hydrogen Storage Material Complex Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619Google Scholar
  2. 2.
    Menon VC, Komarneni S (1998) Porous adsorbents for vehicular natural gas storage: a review. J Porous Mater 5:43–58Google Scholar
  3. 3.
    McBain JW (1909) The mechanism of the adsorption (“sorption”) of hydrogen by carbon. Philos Mag Ser 6 18(108):916–935Google Scholar
  4. 4.
    Frolich PK, White A (1930) Adsorption of methane and hydrogen on charcoal at high pressure. Ind Eng Chem 22(10):1058–1060Google Scholar
  5. 5.
    Carpetis C, Peschka W (1980) A study on hydrogen storage by use of cryoadsorbents. Int J Hydrogen Energy 5:539–554Google Scholar
  6. 6.
    Agarwal RK, Noh JS, Schwarz JA, Davini P (1987) Effect of surface acidity of activated carbon on hydrogen storage. Carbon 25(2):219–226Google Scholar
  7. 7.
    Chahine R, Bose TK (1994) Low-pressure adsorption storage of hydrogen. Int J Hydrogen Energy 19(2):161–164Google Scholar
  8. 8.
    Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214Google Scholar
  9. 9.
    Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, LondonGoogle Scholar
  10. 10.
    Menon PG (1968) Adsorption at high pressures. Chem Rev 68(3):277–294Google Scholar
  11. 11.
    Broom DP, Walton A, Book D, Benham MJ (2007) The accurate determination of the temperature dependence of hydrogen uptake by Na-X zeolite. Presented at the 15th International Zeolite Conference, Beijing, China, 12–17 August 2007Google Scholar
  12. 12.
    Thomas KM (2009) Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Trans 1487–1505Google Scholar
  13. 13.
    Yürüm Y, Taralp A, Veziroglu TN (2009) Storage of hydrogen in nanostructured carbon materials. Int J Hydrogen Energy 34:3784–3798Google Scholar
  14. 14.
    Rzepka M, Lamp P, de la Casa-Lillo MA (1998) Physisorption of hydrogen on microporous carbon and carbon nanotubes. J Phys Chem B 102:10894–10898Google Scholar
  15. 15.
    Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2007) Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45:293–303Google Scholar
  16. 16.
    Zlotea C, Moretto P, Steriotis T (2009) A Round Robin characterisation of the hydrogen sorption properties of a carbon based material. Int J Hydrogen Energy 34(7):3044–3057Google Scholar
  17. 17.
    Jordá-Beneyto M, Lozano-Castelló D, Suárez-García F, Cazorla-Amorós D, Linares-Solano Á (2008) Advanced activated carbon monoliths and activated carbons for hydrogen storage. Microporous Mesoporous Mater 112:235–242Google Scholar
  18. 18.
    Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379Google Scholar
  19. 19.
    Züttel A, Orimo S (2002) Hydrogen in nanostructured, carbon-related, and metallic materials. MRS Bull 27(9):705–711Google Scholar
  20. 20.
    Hirscher M, Becher M, Haluska M, Dettlaff-Weglikowska U, Quintel A, Duesberg GS, Choi Y-M, Downes P, Hulman M, Roth S, Stepanek I, Bernier P (2001) Hydrogen storage in sonicated carbon materials. Appl Phys A 72:129–132Google Scholar
  21. 21.
    Chambers A, Park C, Baker RTK, Rodriguez NM (1998) Hydrogen storage in graphite nanofibers. J Phys Chem B 102(22):4253–4256Google Scholar
  22. 22.
    Lamari Darkrim F, Malbrunot P, Tartaglia GP (2002) Review of hydrogen storage by adsorption in carbon nanotubes. Int J Hydrogen Energy 27:193–202Google Scholar
  23. 23.
    Blackman JM, Patrick JW, Snape CE (2006) An accurate volumetric differential pressure method for the determination of hydrogen storage capacity at high pressures in carbon materials. Carbon 44:918–927Google Scholar
  24. 24.
    Pubysheva OV, Farajian AA, Yakobson BI (2008) Fullerene nanocage capacity for hydrogen storage. Nano Lett 8(3):767–774Google Scholar
  25. 25.
    Xu W-C, Takahashi K, Matsuo Y, Hattori Y, Kumagai M, Ishiyama S, Kaneko K, Iijima S (2007) Investigation of hydrogen storage capacity of various carbon materials. Int J Hydrogen Energy 32:2504–2512Google Scholar
  26. 26.
    Yang Z, Xia Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129:1673–1679Google Scholar
  27. 27.
    Hu Q, Lu Y, Meisner GP (2008) Preparation of nanoporous carbon particles and their cryogenic hydrogen storage capacities. J Phys Chem C 112:1516–1523Google Scholar
  28. 28.
    Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE (2005) Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J Am Chem Soc 127:16006–16007Google Scholar
  29. 29.
    Gogotsi Y, Portet C, Osswald S, Simmons JM, Yildirim T, Laudisio G, Fischer JE (2009) Importance of pore size in high-pressure hydrogen storage by porous carbons. Int J Hydrogen Energy 34:6314–6319Google Scholar
  30. 30.
    Baerlocher Ch, Yoshikawa T, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th edn. Elsevier, AmsterdamGoogle Scholar
  31. 31.
    Nijkamp MG, Raaymakers JEMJ, van Dillen AJ, de Jong KP (2001) Hydrogen storage using physisorption - materials demands. Appl Phys A 72:619–623Google Scholar
  32. 32.
    Vitillo JG, Ricchiardi G, Spoto G, Zecchina A (2005) Theoretical maximal storage of hydrogen in zeolitic frameworks. Phys Chem Chem Phys 7:3948–3954Google Scholar
  33. 33.
    Langmi HW, Walton A, Al-Mamouri MM, Johnson SR, Book D, Speight JD, Edwards PP, Gameson I, Anderson PA, Harris IR (2003) Hydrogen adsorption in zeolites A, X, Y and RHO. J Alloy Compd 356–357:710–715Google Scholar
  34. 34.
    Anderson PA (2008) Storage of hydrogen in zeolites. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, CambridgeGoogle Scholar
  35. 35.
    Du X, Wu E (2006) Physisorption of hydrogen in A, X and ZSM-5 types of zeolites at moderately high pressures. Chin J Chem Phys 19(5):457–462MathSciNetGoogle Scholar
  36. 36.
    van den Berg AWC, Bromley ST, Jansen JC (2005) Thermodynamic limits on hydrogen storage in sodalite framework materials: a molecular mechanics investigation. Microporous Mesoporous Mater 78:63–71Google Scholar
  37. 37.
    van den Berg AWC, Bromley ST, Wojdel JC, Jansen JC (2006) Adsorption isotherms of H2 in microporous materials with SOD structure: a grand canonical Monte Carlo study. Microporous Mesoporous Mater 87:235–242Google Scholar
  38. 38.
    Song MK, No KT (2007) Molecular simulation of hydrogen adsorption in organic zeolite. Catal Today 120:374–382Google Scholar
  39. 39.
    Fraenkel D, Shabtai J (1977) Encapsulation of hydrogen in molecular sieve zeolites. J Am Chem Soc 99:7074–7076Google Scholar
  40. 40.
    Efstathiou AM, Suib SL, Bennett CO (1990) Encapsulation of molecular hydrogen in zeolites at 1 atm. J Catal 123:456–462Google Scholar
  41. 41.
    Weitkamp J, Fritz M, Ernst S (1995) Zeolites as media for hydrogen storage. Int J Hydrogen Energy 20(12):967–970Google Scholar
  42. 42.
    Garrone E, Bonelli B, Otero Areán C (2008) Enthalpy-entropy correlation for hydrogen adsorption on zeolites. Chem Phys Lett 456:68–70Google Scholar
  43. 43.
    Otero Areán C, Turnes Palomino G, Llop Carayol MR (2007) Variable temperature FT-IR studies on hydrogen adsorption on the zeolite (Mg, Na)-Y. Appl Surf Sci 253:5701–5704Google Scholar
  44. 44.
    Felderhoff M, Weidenthaler C, von Helmolt R, Eberle U (2007) Hydrogen storage: the remaining scientific and technological challenges. Phys Chem Chem Phys 9:2643–2653Google Scholar
  45. 45.
    van den Berg AWC, Otero Areán C (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun 668-681Google Scholar
  46. 46.
    Rosseinsky MJ (2004) Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility. Microporous Mesoporous Mater 73:15–30Google Scholar
  47. 47.
    Rowsell JLC, Yaghi OM (2004) Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14Google Scholar
  48. 48.
    Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed 44:4670–4679Google Scholar
  49. 49.
    Collins DJ, Zhou HC (2007) Hydrogen storage in metal-organic frameworks. J Mater Chem 17:3154–3160Google Scholar
  50. 50.
    Zhao D, Yuan D, Zhou H-C (2008) The current status of hydrogen storage in metal-organic frameworks. Energy Environ Sci 1:222–235Google Scholar
  51. 51.
    Dincă M, Long JR (2008) Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew Chem Int Ed 47(36):6766–6779Google Scholar
  52. 52.
    Murray LJ, Dincă M, Long JR (2009) Hydrogen storage in metal-organic frameworks. Chem Soc Rev 38:1294–1314Google Scholar
  53. 53.
    Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keefe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129Google Scholar
  54. 54.
    Züttel A (2003) Materials for hydrogen storage. Mater Today 6(9):24–33Google Scholar
  55. 55.
    Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) Hydrogen sorption in functionalized metal-organic frameworks. J Am Chem Soc 126:5666–5667Google Scholar
  56. 56.
    Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal-organic frameworks. J Am Chem Soc 128:3494–3495Google Scholar
  57. 57.
    Dincă M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. J Am Chem Soc 128:16876–16883Google Scholar
  58. 58.
    Kubas GJ (2007) Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem Rev 107:4152–4205Google Scholar
  59. 59.
    Hoang TKA, Antonelli DM (2009) Exploiting the Kubas interaction in the design of hydrogen storage materials. Adv Mater 21:1787–1800Google Scholar
  60. 60.
    Zhao X, Xiao B, Fletcher AJ, Thomas KM, Bradshaw D, Rosseinsky MJ (2004) Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Science 306:1012–1015Google Scholar
  61. 61.
    Fletcher AJ, Thomas KM, Rosseinsky MJ (2005) Flexibility in metal-organic framework materials: impact on sorption properties. J Solid State Chem 178(8):2491–2510Google Scholar
  62. 62.
    Panella B, Hirscher M, Pütter H, Müller U (2006) Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv Funct Mater 16:520–524Google Scholar
  63. 63.
    Chen B, Zhao X, Putkham A, Hong K, Lobkovsky EB, Hurtado EJ, Fletcher AJ, Thomas KM (2008) Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. J Am Chem Soc 130:6411–6423Google Scholar
  64. 64.
    Makowski P, Thomas A, Kuhn P, Goettmann F (2009) Organic materials for hydrogen storage applications: from physisorption on organic solids to chemisorption in organic molecules. Energy Environ Sci 2:480–490Google Scholar
  65. 65.
    McKeown NB, Budd PM (2006) Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 35:675–683Google Scholar
  66. 66.
    Budd PM, Butler A, Selbie J, Mahmood K, McKeown NB, Ghanem B, Msayib K, Book D, Walton A (2007) The potential of organic polymer-based hydrogen storage materials. Phys Chem Chem Phys 9:1802–1808Google Scholar
  67. 67.
    Tsyurupa MP, Davankov VA (2006) Porous structure of hypercrosslinked polystyrene: state-of-the-art mini-review. React Funct Polym 66(7):768–779Google Scholar
  68. 68.
    Wood CD, Tan B, Trewin A, Niu H, Bradshaw D, Rosseinsky MJ, Khimyak YZ, Campbell NL, Kirk R, Stöckel E, Cooper AI (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19:2034–2048Google Scholar
  69. 69.
    Han SS, Furukawa H, Yaghi OM, Goddard WA (2008) Covalent organic frameworks as exceptional hydrogen storage materials. J Am Chem Soc 130:11580–11581Google Scholar
  70. 70.
    Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131:8875–8883Google Scholar
  71. 71.
    El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, Côté AP, Taylor RE, O’Keefe M, Yaghi OM (2007) Designed synthesis of 3D covalent organic frameworks. Science 316:268–272Google Scholar
  72. 72.
    Spoto G, Vitillo JG, Cocina D, Damin A, Bonino F, Zecchina A (2007) FTIR spectroscopy and thermodynamics of hydrogen adsorbed in a cross-linked polymer. Phys Chem Chem Phys 9:4992–4999Google Scholar
  73. 73.
    Comotti A, Bracco S, Distefano G, Sozzani P (2009) Methane, carbon dioxide and hydrogen storage in nanoporous dipeptide-based materials. Chem Commun 284-286Google Scholar
  74. 74.
    Msayib KJ, Book D, Budd PM, Chaukura N, Harris KDM, Helliwell M, Tedds S, Walton A, Warren JE, Xu M, McKeown NB (2009) Nitrogen and hydrogen adsorption by an organic microporous crystal. Angew Chem Int Ed 48:3273–3277Google Scholar
  75. 75.
    Panella B, Kossykh L, Dettlaff-Weglikowska U, Hirscher M, Zerbi G, Roth S (2005) Volumetric measurement of hydrogen storage in HCL-treated polyaniline and polypyrrole. Synth Met 151:208–210Google Scholar
  76. 76.
    Rose M, Böhlmann W, Sabo M, Kaskel S (2008) Element-organic frameworks with high permanent porosity. Chem Commun 2462-2464Google Scholar
  77. 77.
    Graham T (1866) On the absorption and dialytic separation of gases by colloid septa. Philos Trans R Soc Lond 156:399–439Google Scholar
  78. 78.
    Sandrock G, Suda S, Schlapbach L (1992) Applications. In: Schlapbach L (ed) Topics in applied physics vol. 67: hydrogen in intermetallic compounds II. Surface and dynamic properties, applications. Springer-Verlag, BerlinGoogle Scholar
  79. 79.
    Bowman RC Jr, Fultz B (2002) Metallic hydrides I: hydrogen storage and other gas-phase applications. MRS Bull 27(9):688–693Google Scholar
  80. 80.
    Sandrock G, Bowman RC Jr (2003) Gas-based hydride applications: recent progress and future needs. J Alloy Compd 356, 357:794–799Google Scholar
  81. 81.
    Fukai Y (2005) The metal-hydrogen system. Basic bulk properties, 2nd edn. Springer, BerlinGoogle Scholar
  82. 82.
    Alefeld G, Völkl J (eds) (1978) Topics in applied physics vol. 28: hydrogen in metals I. Basic properties. Springer-Verlag, BerlinGoogle Scholar
  83. 83.
    Alefeld G, Völkl J (eds) (1978) Topics in applied physics vol. 29: hydrogen in metals II. Application-oriented properties. Springer-Verlag, BerlinGoogle Scholar
  84. 84.
    Schlapbach L (ed) (1988) Topics in applied physics Vol. 63: hydrogen in intermetallic compounds I. Electronic, thermodynamic and crystallographic properties, preparation. Springer-Verlag, BerlinGoogle Scholar
  85. 85.
    Schlapbach L (ed) (1992) Topics in applied physics vol. 67: hydrogen in intermetallic compounds II. Surface and dynamic properties, applications. Springer-Verlag, BerlinGoogle Scholar
  86. 86.
    Wipf H (ed) (1997) Topics in applied physics vol. 73: hydrogen in metals III. Properties and applications. Springer-Verlag, BerlinGoogle Scholar
  87. 87.
    Sandrock G (1999) A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J Alloy Compd 293–295:877–888Google Scholar
  88. 88.
    Libowitz GG, Hayes HF, Gibb TRP Jr (1958) The system zirconium-nickel and hydrogen. J Phys Chem 62(1):76–79Google Scholar
  89. 89.
    Reilly JJ, Wiswall RH (1967) The reaction of hydrogen with alloys of magnesium and copper. Inorg Chem 6(12):2220–2223Google Scholar
  90. 90.
    Reilly JJ, Wiswall RH (1968) The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg Chem 7(11):2254–2256Google Scholar
  91. 91.
    van Vucht JHN, Kuijpers FA, Bruning HCAM (1970) Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res Rep 25(2):133–140Google Scholar
  92. 92.
    Griessen R, Riesterer T (1988) Heat of formation models. In: Schlapbach L (ed) Topics in applied physics vol. 67: hydrogen in intermetallic compounds I. Surface and dynamic properties, applications. Springer-Verlag, BerlinGoogle Scholar
  93. 93.
    Buschow KHJ, Bouten PCP, Miedema AR (1982) Hydrides formed from intermetallic compounds of two transition metals: a special class of ternary alloys. Rep Prog Phys 45:937–1039Google Scholar
  94. 94.
    Griessen R, Driessen A (1984) Heat of formation and band structure of binary and ternary metal hydrides. Phys Rev B 30(8):4372–4381Google Scholar
  95. 95.
    Yvon K (2003) Hydrogen in novel solid-state metal hydrides. Z Kristallogr 218:108–116Google Scholar
  96. 96.
    Luo S, Clewley JD, Flanagan TB, Bowman RC Jr, Wade LA (1998) Further studies of the isotherms of LaNi5−xSnx-H for x = 0–0.5. J Alloy Compd 267:171–181Google Scholar
  97. 97.
    Bowman RC Jr, Luo CH, Ahn CC, Witham CK, Fultz B (1995) The effect of tin on the degradation of LaNi5-ySny metal hydrides during thermal cycling. J Alloy Compd 217:185–192Google Scholar
  98. 98.
    Chandra D, Reilly JJ, Chellappa R (2006) Metal hydrides for vehicular applications: the state of the art. JOM 58(2):26–32Google Scholar
  99. 99.
    Ivey DG, Northwood DO (2003) Storing energy in metal hydrides: a review of the physical metallurgy. J Mater Sci 18:321–347Google Scholar
  100. 100.
    Sandrock G, Thomas G (2001) The IEA/DOE/SNL on-line hydride databases. Appl Phys A 72:153–155Google Scholar
  101. 101.
    Feng F, Geng M, Northwood DO (2001) Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review. Int J Hydrogen Energy 26:725–734Google Scholar
  102. 102.
    Young K, Fetcenko MA, Li F, Ouchi T (2008) Structural, thermodynamic, and electrochemical properties of TixZr1-x(VNiCrMnCoAl)2 C14 Laves phase alloys. J Alloy Compd 464:238–247Google Scholar
  103. 103.
    Luo W, Clewley JD, Flanagan TB, Oates WA (1992) Thermodynamic characterization of the Zr-Mn-H system Part 1. Reaction of H2 with single-phase ZrMn2+x C-14 Laves phase alloys. J Alloy Compd 185:321–338Google Scholar
  104. 104.
    Töpler J, Feucht K (1989) Results of a test fleet with metal hydride motor cars. Z Phys Chem NF 164:1451–1461Google Scholar
  105. 105.
    Reilly JJ, Wiswall RH (1974) Formation and properties of iron titanium hydride. Inorg Chem 13(1):218–222Google Scholar
  106. 106.
    Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 32:1121–1140Google Scholar
  107. 107.
    Nomura K, Akiba E (1995) H2 Absorbing-desorbing characterization of the Ti-V-Fe alloy system. J Alloy Compd 231:513–517Google Scholar
  108. 108.
    Cho S-W, Shim G, Choi G-S, Park C-N, Yoo J-H, Choi J (2007) Hydrogen absorption-desorption properties of Ti0.32Cr0.43V0.25 alloy. J Alloy Compd 430:136–141Google Scholar
  109. 109.
    Seo C-Y, Kim J-H, Lee PS, Lee J-Y (2003) Hydrogen storage properties of vanadium-based b.c.c solid solution metal hydrides. J Alloy Compd 348:252–257Google Scholar
  110. 110.
    Song XP, Pei P, Zhang PL, Chen GL (2008) The influence of alloy elements on the hydrogen storage properties in vanadium-based solid solution alloys. J Alloy Compd 455:392–397Google Scholar
  111. 111.
    Mazzolai G, Coluzzi B, Biscarini A, Mazzolai FM, Tuissi A, Agresti F, Lo Russo S, Maddalena A, Palade P, Principi G (2008) Hydrogen-storage capacities and H diffusion in bcc TiVCr alloys. J Alloy Compd 466:133–139Google Scholar
  112. 112.
    Wang J-Y (2009) Comparison of hydrogen storage properties of Ti0.37V0.38Mn0.25 alloys prepared by mechanical alloying and vacuum arc melting. Int J Hydrogen Energy 34:3771–3777Google Scholar
  113. 113.
    Akiba E, Okada M (2002) Metallic hydrides III: body-centered-cubic solid-solution alloys. MRS Bull 27(9):699–703Google Scholar
  114. 114.
    Graetz J, Reilly JJ (2007) Kinetically stabilized hydrogen storage materials. Scr Mater 56:835–839Google Scholar
  115. 115.
    Hauback BC (2008) Structures of aluminium-based light weight hydrides. Z Kristallogr 223:636–648Google Scholar
  116. 116.
    Graetz J (2009) New approaches to hydrogen storage. Chem Soc Rev 38:73–82Google Scholar
  117. 117.
    Kuji T, Matsumura Y, Uchida H, Aizawa T (2002) Hydrogen absorption of nanocrystalline palladium. J Alloy Compd 330–332:718–722Google Scholar
  118. 118.
    Suleiman M, Jisrawi NM, Dankert O, Reetz MT, Bähtz C, Kirchheim R, Pundt A (2003) Phase transition and lattice expansion during hydrogen loading of nanometer sized palladium clusters. J Alloy Compd 356–357:644–648Google Scholar
  119. 119.
    Pundt A (2004) Hydrogen in nano-sized metals. Adv Eng Mater 6(1–2):11–21Google Scholar
  120. 120.
    Pundt A, Kirchheim R (2006) Hydrogen in metals: microstructural aspects. Annu Rev Mater Res 36:555–608Google Scholar
  121. 121.
    Yamauchi M, Kobayashi H, Kitagawa H (2009) Hydrogen storage mediated by Pd and Pt nanoparticles. ChemPhysChem 10:2566–2576Google Scholar
  122. 122.
    Stampfer JF Jr, Holley CE Jr, Suttle JF (1960) The magnesium-hydrogen system. J Am Chem Soc 82(14):3504–3508Google Scholar
  123. 123.
    Huot J, Liang G, Schulz R (2001) Mechanically alloyed metal hydride systems. Appl Phys A 72:187–195Google Scholar
  124. 124.
    Corey RL, Ivancic TM, Shane DT, Carl EA, Bowman RC Jr, Bellosta von Colbe JM, Dornheim M, Bormann R, Huot J, Zidan R, Stowe AC, Conradi MS (2008) Hydrogen motion in magnesium hydride by NMR. J Phys Chem C 112:19784–19790Google Scholar
  125. 125.
    Zaluska A, Zaluski L, Ström-Olsen JO (2001) Structure, catalysis, and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl Phys A 72:157–165Google Scholar
  126. 126.
    Gross AF, Ahn CC, Van Atta SL, Liu P, Vajo JJ (2009) Fabrication and hydrogen sorption behaviour of nanoparticulate MgH2 incorporated in a porous carbon host. Nanotechnology 20:204005Google Scholar
  127. 127.
    Aguey-Zinsou K-F, Ares-Fernández J-R (2008) Synthesis of colloidal magnesium: a near room temperature store for hydrogen. Chem Mater 20:376–378Google Scholar
  128. 128.
    Barkhordarian G, Klassen T, Bormann R (2006) Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction. J Phys Chem 110:11020–11024Google Scholar
  129. 129.
    Aguey-Zinsou K-F, Ares Fernandez JR, Klassen T, Bormann R (2007) Effect of Nb2O5 on MgH2 properties during mechanical milling. Int J Hydrogen Energy 32:2400–2407Google Scholar
  130. 130.
    Wagemans RWP, van Lenthe JH, de Jongh PE, van Dillen AJ, de Jong KP (2005) Hydrogen storage in magnesium clusters: quantum chemical study. J Am Chem Soc 127:16675–16680Google Scholar
  131. 131.
    Grant D (2008) Magnesium hydride for hydrogen storage. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, CambridgeGoogle Scholar
  132. 132.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184Google Scholar
  133. 133.
    Suryanarayana C, Koch CC (2000) Nanocrystalline materials—current research and future directions. Hyperfine Interact 130:5–44Google Scholar
  134. 134.
    Suryanarayana C (2002) The structure and properties of nanocrystalline materials: issues and concerns. JOM 54(9):24–27Google Scholar
  135. 135.
    Bérubé V, Radtke G, Dresselhaus M, Chen G (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res 31:637–663Google Scholar
  136. 136.
    Maeland AJ, Tanner LE, Libowitz GG (1980) Hydrides of metallic glass alloys. J Less-Common Met 74:279–285Google Scholar
  137. 137.
    Orimo S, Fujii H (1998) Effects of nanometer-scale structure on hydriding properties of Mg-Ni alloys: a review. Intermetallics 6:185–192Google Scholar
  138. 138.
    Zaluski L, Zaluska A, Tessier P, Ström-Olsen JO, Schulz R (1995) Effects of relaxation on hydrogen absorption in Fe-Ti produced by ball-milling. J Alloy Compd 227:53–57Google Scholar
  139. 139.
    Bououdina M, Fruchart D, Jacquet S, Pontonnier L, Soubeyroux JL (1999) Effect of nickel alloying by using ball milling on the absorption properties of TiFe. Int J Hydrogen Energy 24:885–890Google Scholar
  140. 140.
    Harris JH, Curtin WA, Schultz L (1988) Hydrogen storage characteristics of mechanically alloyed amorphous metals. J Mater Res 3(5):872–883Google Scholar
  141. 141.
    Liang G, Huot J, Schulz R (2001) Hydrogen storage properties of the mechanically alloyed LaNi5-based materials. J Alloy Compd 320:133–139Google Scholar
  142. 142.
    Hotta H, Abe M, Kuji T, Uchida H (2007) Synthesis of Ti-Fe alloys by mechanical alloying. J Alloy Compd 439:221–226Google Scholar
  143. 143.
    Abe M, Kuji T (2007) Hydrogen absorption of TiFe alloy synthesized by ball milling and post-annealing. J Alloy Compd 446–447:200–203Google Scholar
  144. 144.
    Huot J, Enoki H, Akiba E (2008) Synthesis, phase transformation, and hydrogen storage properties of ball-milled TiV0.9Mn1.1. J Alloy Compd 453:203–209Google Scholar
  145. 145.
    Parente A, Nale A, Catti M, Kopnin E, Caracino P (2008) Hydrogenation properties of Mg2AlNi2 and mechanical alloying in the Mg-Al-Ni system. J Alloy Compd 477(1–2):420–424Google Scholar
  146. 146.
    Corré S, Bououdina M, Kuriyama N, Fruchart D, Adachi G (1999) Effects of mechanical grinding on the hydrogen storage and electrochemical properties of LaNi5. J Alloy Compd 292:166–173Google Scholar
  147. 147.
    Fujii H, Munehiro S, Fujii K, Orimo S (2002) Effect of mechanical grinding under Ar and H2 atmospheres on structural and hydriding properties in LaNi5. J Alloy Compd 330–332:747–751Google Scholar
  148. 148.
    Ares JR, Cuevas F, Percheron-Guégan A (2004) Influence of thermal annealing on the hydrogenation properties of mechanically milled AB5-type alloys. Mater Sci Eng B 108:76–80Google Scholar
  149. 149.
    Singh A, Singh BK, Davidson DJ, Srivastava ON (2004) Studies on improvement of hydrogen storage capacity of AB5 type: MmNi4.6Fe0.4 alloy. Int J Hydrogen Energy 29:1151–1156Google Scholar
  150. 150.
    Takeichi N, Senoh H, Takeshita HT, Oishi T, Tanaka H, Kiyobayashi T, Kuriyama N (2004) Hydrogenation properties and structure of Ti-Cr alloy prepared by mechanical grinding. Mater Sci Eng B 108:100–104Google Scholar
  151. 151.
    Santos SF, Costa ALM, de Castro JFR, dos Santos DS, Botta WJ, Ishikawa TT (2004) Mechanical and reactive milling of a TiCrV BCC solid solution. J Metastable Nanocrystalline Mater 20–21:291–296Google Scholar
  152. 152.
    Singh BK, Shim G, Cho S-W (2007) Effects of mechanical milling on hydrogen storage properties of Ti0.32Cr0.43V0.25 alloy. Int J Hydrogen Energy 32:4961–4965Google Scholar
  153. 153.
    Orimo S, Züttel A, Ikeda K, Saruki S, Fukunaga T, Fujii H, Schlapbach L (1999) Hydriding properties of the MgNi-based systems. J Alloy Compd 293–295:437–442Google Scholar
  154. 154.
    Terashita N, Takahashi M, Kobayashi K, Sasai T, Akiba E (1999) Synthesis and hydriding/dehydriding properties of amorphous Mg2Ni1.9M0.1 alloys mechanically alloyed from Mg2Ni0.9M0.1 (M = none, Ni, Ca, La, Y, Al, Si, Cu and Mn) and Ni powder. J Alloy Compd 293–295:541–545Google Scholar
  155. 155.
    Varin RA, Czujko T, Wronski ZS (2009) Nanomaterials for solid state hydrogen storage. Springer, New YorkGoogle Scholar
  156. 156.
    Bowman RC Jr (1988) Preparation and properties of amorphous hydrides. Mater Sci Forum 31:197–228Google Scholar
  157. 157.
    Eliaz N, Eliezer D (1999) An overview of hydrogen interaction with amorphous alloys. Adv Perform Mater 6:5–31Google Scholar
  158. 158.
    Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53(20):1951–1953Google Scholar
  159. 159.
    Tsai AP (2008) Icosahedral clusters, icosaheral order and stability of quasicrystals - a view of metallurgy. Sci Technol Adv Mater 9:013008Google Scholar
  160. 160.
    Bindi L, Steinhardt PJ, Yao N, Lu PJ (2009) Natural quasicrystals. Science 324:1306–1309Google Scholar
  161. 161.
    Takasaki A, Kelton KF (2002) High-pressure hydrogen loading in Ti45Zr38Ni17 amorphous and quasicrystal powders synthesized by mechanical alloying. J Alloy Compd 347:295–300Google Scholar
  162. 162.
    Takasaki A, Kelton KF (2006) Hydrogen storage in Ti-based quasicrystal powders produced by mechanical alloying. Int J Hydrogen Energy 31:183–190Google Scholar
  163. 163.
    Bystrzycki J, Polanski M, Malka IE, Komuda A (2009) Hydriding properties of Mg-Al-Zn quasicrystal powder produced by mechanical alloying. Z Kristallogr 224:105–108Google Scholar
  164. 164.
    Bogdanović B, Schwickardi M (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloy Compd 253–254:1–9Google Scholar
  165. 165.
    Chen P, Xiong Z, Luo J, Lin J, Tan KL (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420:302–304Google Scholar
  166. 166.
    Schüth F, Bogdanović B, Felderhoff M (2004) Light metal hydrides and complex hydrides for hydrogen storage. Chem Commun 2249-2258Google Scholar
  167. 167.
    Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132Google Scholar
  168. 168.
    Jensen C, Yang Y, Chou MY (2008) Alanates as hydrogen storage materials. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, CambridgeGoogle Scholar
  169. 169.
    Jensen CM, Zidan R, Mariels N, Hee A, Hagen C (1999) Advanced titanium doping of sodium aluminium hydride: segue to a practical hydrogen storage material? Int J Hydrogen Energy 24:461–465Google Scholar
  170. 170.
    Zidan RA, Takara S, Hee AG, Jensen CM (1999) Hydrogen cycling behavior of zirconium and titanium-zirconium-doped sodium aluminium hydride. J Alloy Compd 285:119–122Google Scholar
  171. 171.
    Bogdanović B, Felderhoff M, Pommerin A, Schüth F, Spielkamp N (2006) Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4. Adv Mater 18:1198–1201Google Scholar
  172. 172.
    Jensen CM, Gross KJ (2001) Development of catalytically enhanced sodium aluminium hydride as a hydrogen-storage material. Appl Phys A 72:213–219Google Scholar
  173. 173.
    Eberle U, Felderhoff M, Schüth F (2009) Chemical and physical solutions for hydrogen storage. Angew Chem Int Ed 48:6608–6630Google Scholar
  174. 174.
    Lohstroh W, Fichtner M, Breitung W (2009) Complex hydrides as solid storage materials: first safety tests. Int J Hydrogen Energy 34:5981–5985Google Scholar
  175. 175.
    Graetz J, Lee Y, Reilly JJ, Park S, Vogt T (2005) Structures and thermodynamics of the mixed alkali alanates. Phys Rev B 71:184115Google Scholar
  176. 176.
    Léon A, Zabara O, Sartori S, Eigen N, Dornheim M, Klassen T, Muller J, Hauback B, Fichtner M (2009) Investigation of (Mg, Al, Li, H)-based hydride and alanate mixtures produced by reactive ball milling. J Alloy Compd 476:425–428Google Scholar
  177. 177.
    Sartori S, Léon A, Zabara O, Muller J, Fichtner M, Hauback BC (2009) Studies of mixed hydrides based on Mg and Ca by reactive ball milling. J Alloy Compd 476:639–643Google Scholar
  178. 178.
    Sartori S, Qi X, Eigen N, Muller J, Klassen T, Dornheim M, Hauback BC (2009) A search for new Mg- and K-containing alanates for hydrogen storage. Int J Hydrogen Energy 34:4582–4586Google Scholar
  179. 179.
    Gregory DH (2008) Lithium nitrides, imides and amides as lightweight, reversible hydrogen stores. J Mater Chem 18:2321–2330Google Scholar
  180. 180.
    Hino S, Ichikawa T, Ogita N, Udagawa M, Fujii H (2005) Quantitative estimation of NH3 partial pressure in H2 desorbed from the Li-N-H system by Raman spectroscopy. Chem Commun 3038-3040Google Scholar
  181. 181.
    Uribe FA, Gottesfeld S, Zawodzinski TA Jr (2002) Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance. J Electrochem Soc 149(3):A293–A296Google Scholar
  182. 182.
    Gregory DH (2008) Imides and amides as hydrogen storage materials. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, CambridgeGoogle Scholar
  183. 183.
    Züttel A, Rentsch S, Fischer P, Wenger P, Sudan Mauron P, Emmenegger C (2003) Hydrogen storage properties of LiBH4. J Alloy Compd 356–357:515–520Google Scholar
  184. 184.
    Nakamori Y, Orimo S (2008) Borohydrides as hydrogen storage materials. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, CambridgeGoogle Scholar
  185. 185.
    Walker G (2008) Multicomponent hydrogen storage systems. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, CambridgeGoogle Scholar
  186. 186.
    Orimo S, Fujii H (2001) Materials science of Mg-Ni-based new hydrides. Appl Phys A 72:167–186Google Scholar
  187. 187.
    Blomqvist H, Rönnebro E, Noréus D, Kujii T (2002) Competing stabilisation mechanisms in Mg2NiH4. J Alloy Compd 330–332:268–270Google Scholar
  188. 188.
    Häussermann U, Blomqvist H, Noréus D (2002) Bonding and stability of the hydrogen storage material Mg2NiH4. Inorg Chem 41:3684–3692Google Scholar
  189. 189.
    Mao WL, Koh CA, Sloan ED (2007) Clathrate hydrates under pressure. Phys Today 60(10):42–47Google Scholar
  190. 190.
    Mao WL, Mao H, Goncharov AF, Struzhkin VV, Guo Q, Hu J, Shu J, Hemley RJ, Somayazulu M, Zhao Y (2002) Hydrogen clusters in clathrate hydrate. Science 297:2247–2249Google Scholar
  191. 191.
    Struzhkin VV, Militzer B, Mao WL, Mao HK, Hemley RJ (2007) Hydrogen storage in molecular clathrates. Chem Rev 107:4133–4151Google Scholar
  192. 192.
    Florusse LJ, Peters CJ, Schoonman J, Hester KC, Koh CA, Dec SF, Marsh KN, Sloan ED (2004) Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306:469–471Google Scholar
  193. 193.
    Lee H, Lee J, Kim DY, Park J, Seo Y-T, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA (2005) Tuning clathrate hydrates for hydrogen storage. Nature 434:743–746Google Scholar
  194. 194.
    Papadimitriou NI, Tsimpanogiannis IN, Papaioannou AT, Stubos AK (2008) Evaluation of the hydrogen-storage capacity of pure H2 and binary H2-THF hydrates with Monte Carlo simulations. J Phys Chem C 112:10294–10302Google Scholar
  195. 195.
    Papadimitriou NI, Tsimpanogiannis IN, Peters CJ, Papaioannou AT, Stubos AK (2008) Hydrogen storage in sH hydrates: a Monte Carlo study. J Phys Chem B 112:14206–14211Google Scholar
  196. 196.
    Duarte ARC, Shariati A, Rovetto LJ, Peters CJ (2008) Water cavities of sH clathrate hydrate stabilized by molecular hydrogen: phase equilibrium measurements. J Phys Chem B 112(7):1888–1889Google Scholar
  197. 197.
    Strobel TA, Koh CA, Sloan ED (2008) Water cavities of sH clathrate hydrate stabilized by molecular hydrogen. J Phys Chem B 112(7):1885–1887Google Scholar
  198. 198.
    Daschbach JL, Chang T-M, Corrales LR, Dang LX, McGrail P (2006) Molecular mechanisms of hydrogen-loaded β-hydroquinone clathrate. J Phys Chem B 110:17291–17295Google Scholar
  199. 199.
    Strobel TA, Kim Y, Andrews GS, Ferrell JR III, Koh CA, Herring AM, Sloan ED (2008) Chemical-clathrate hybrid hydrogen storage: storage in both guest and host. J Am Chem Soc 130:14975–14977Google Scholar
  200. 200.
    Yoon J-H, Lee Y-J, Park J, Kawamura T, Yamamoto Y, Komai T, Takeya S, Han SS, Lee J-W, Lee Y (2009) Hydrogen molecules trapped in interstitial host channels of α-hydroquinone. ChemPhysChem 10:352–355Google Scholar
  201. 201.
    Su F, Bray CL, Tan B, Cooper AI (2008) Rapid and reversible hydrogen storage in clathrate hydrates using emulsion-templated polymers. Adv Mater 20:2663–2666Google Scholar
  202. 202.
    Su F, Bray CL, Carter BO, Overend G, Cropper C, Iggo JA, Khimyak YZ, Fogg AM, Cooper AI (2009) Reversible hydrogen storage in hydrogel clathrate hydrates. Adv Mater 21:1–5Google Scholar
  203. 203.
    Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150Google Scholar
  204. 204.
    Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A 373:1–56Google Scholar
  205. 205.
    Stracke MP, Ebeling G, Cataluña R, Dupont J (2007) Hydrogen-storage materials based on imidazolium ionic liquids. Energy Fuels 21:1695–1698Google Scholar
  206. 206.
    Wang L, Yang RT (2008) New sorbents for hydrogen storage by hydrogen spillover–a review. Energy Environ Sci 1:268–279Google Scholar
  207. 207.
    Cheng H, Chen L, Cooper AC, Sha X, Pez GP (2008) Hydrogen spillover in the context of hydrogen storage using solid-state materials. Energy Environ Sci 1:338–354Google Scholar
  208. 208.
    Conner WC, Falconer JL (1995) Spillover in heterogeneous catalysis. Chem Rev 95:759–788Google Scholar
  209. 209.
    Lachawiec AJ, Qi G, Yang RT (2005) Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement. Langmuir 21:11418–11424Google Scholar
  210. 210.
    Rao CNR, Nath M (2003) Inorganic nanotubes. Dalton Trans 1-24Google Scholar
  211. 211.
    Seayad AM, Antonelli DM (2004) Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials. Adv Mater 16(9–10):765–777Google Scholar
  212. 212.
    Ma R, Bando Y, Zhu H, Sato T, Xu C, Wu D (2002) Hydrogen uptake in boron nitride nanotubes at room temperature. J Am Chem Soc 124:7672–7673Google Scholar
  213. 213.
    Oku T, Kuno M, Narita I (2004) Hydrogen storage in boron nitride nanomaterials studied by TG/DTA and cluster calculation. J Phys Chem Solids 65:549–552Google Scholar
  214. 214.
    Chen J, Li S-L, Tao Z-L, Shen Y-T, Cui C-X (2003) Titanium disulfide nanotubes as hydrogen-storage materials. J Am Chem Soc 125:5284–5285Google Scholar
  215. 215.
    Chen J, Li SL, Tao ZL (2003) Novel hydrogen storage properties of MoS2 nanotubes. J Alloy Compd 356–357:413–417Google Scholar
  216. 216.
    Tang C, Bando Y, Ding X, Qi S, Golberg D (2002) Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J Am Chem Soc 124(49):14550–14551Google Scholar
  217. 217.
    Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC (2005) Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. J Phys Chem B 109:19422–19427Google Scholar
  218. 218.
    Pan H, Feng YP, Lin J (2007) Hydrogen adsorption by tungsten carbide nanotube. Appl Phys Lett 90:223104Google Scholar
  219. 219.
    Lan J, Cheng D, Cao D, Wang W (2008) Silicon nanotube as a promising candidate for hydrogen storage: from the first principle calculations to Grand Canonical Monte Carlo simulations. J Phys Chem C 112:5598–5604Google Scholar
  220. 220.
    Mpourmpakis G, Froudakis GE, Lithoxoos GP, Samios J (2006) SiC nanotubes: a novel material for hydrogen storage. Nano Lett 6(8):1581–1583Google Scholar
  221. 221.
    Binewale RB, Rayalu S, Devotta S, Ichikawa M (2008) Chemical hydrides: a solution to high capacity hydrogen storage and supply. Int J Hydrogen Energy 33:360–365Google Scholar
  222. 222.
    Christensen CH, Johannessen T, Sørensen RZ, Nørskov JK (2006) Towards an ammonia-mediated hydrogen economy? Catal Today 111:140–144Google Scholar
  223. 223.
    Wiswall R (1978) Hydrogen storage in metals. In: Alefeld G, Völkl J (eds) Topics in applied physics vol. 29: hydrogen in metals II. Application-oriented properties. Springer-Verlag, BerlinGoogle Scholar
  224. 224.
    Bull DJ, Weidner E, Shabalin IL, Telling MTF, Jewell CM, Gregory DH, Ross DK (2010) Pressure-dependent deuterium reaction pathways in the Li-N-D system. Phys Chem Chem Phys 12:2089–2097Google Scholar
  225. 225.
    Lemmon EW, Huber ML, McLinden MO (2007) NIST standard reference database 23: reference fuid thermodynamic and transport properties-REFPROP, version 8.0, National Institute of Standards and Technology, Standard Reference Data Program, GaithersburgGoogle Scholar
  226. 226.
    Hodoshima S, Arai H, Saito Y (2003) Liquid-film-type catalytic decalin dehydrogeno-aromatization for long-term storage and long-distance transportation of hydrogen. Int J Hydrogen Energy 28:197–204Google Scholar

Copyright information

©  Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Hiden Isochema LtdWarringtonUK

Personalised recommendations