Advertisement

Genome-Wide Association Studies (GWAS)

  • Guillaume Pare
  • Matthew P. A. Henderson
Chapter

Abstract

Genome-wide association studies (GWAS) have revolutionized our understanding of common diseases at the molecular level. This chapter discusses these strategies and describes key recent successes in stroke.

Keywords

Atrial Fibrillation Ischemic Stroke Intracranial Aneurysm Linkage Disequilibrium Block Mendelian Randomization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322:881–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Erdmann J, Grosshennig A, Braund PS, König IR, Hengstenberg C, Hall AS, et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet. 2009;41:280–2.PubMedCrossRefGoogle Scholar
  3. 3.
    Gudbjartsson DF, Holm H, Gretarsdottir S, Thorleifsson G, Walters GB, Thorgeirsson G, et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet. 2009;41:876–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Benjamin EJ, Rice KM, Arking DE, Pfeufer A, van Noord C, Smith AV, et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet. 2009;41:879–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.PubMedCrossRefGoogle Scholar
  6. 6.
    Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41:56–65.PubMedCrossRefGoogle Scholar
  8. 8.
    Chasman DI, Paré G, Zee RY, Parker AN, Cook NR, Buring JE, et al. Genetic loci associated with plasma concentration of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein A1, and apolipoprotein B among 6382 white women in genome-wide analysis with replication. Circ Cardiovasc Genet. 2008;1:21–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41:25–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Vink JM, Smit AB, de Geus EJ, Sullivan P, Willemsen G, Hottenga JJ, et al. Genome-wide association study of smoking initiation and current smoking. Am J Hum Genet. 2009;84:367–79.PubMedCrossRefGoogle Scholar
  12. 12.
    Paré G, Chasman DI, Parker AN, Zee RR, Mälarstig A, Seedorf U, et al. Novel associations of CPS1, MUT, NOX4, and DPEP1 with plasma homocysteine in a healthy population: a genome-wide evaluation of 13 974 participants in the Women’s Genome Health Study. Circ Cardiovasc Genet. 2009;2:142–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Bilguvar K, Yasuno K, Niemelä M, Ruigrok YM, von Und Zu Fraunberg M, van Duijn CM, et al. Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet. 2008;40:1472–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Weedon MN, Lettre G, Freathy RM, Lindgren CM, Voight BF, Perry JR, et al. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat Genet. 2007;39:1245–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, Ikeda M, et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet. 2006;38:644–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL, et al. GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron. 2007;54:713–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317:1397–400.PubMedCrossRefGoogle Scholar
  18. 18.
    Gudbjartsson DF, Arnar DO, Helgadottir A, Gretarsdottir S, Holm H, Sigurdsson A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448:353–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007;448:470–3.PubMedCrossRefGoogle Scholar
  20. 20.
    Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, et al. A genome-wide association study of global gene expression. Nat Genet. 2007;39:1202–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Collins R, Armitage J, Parish S, Sleight P, Peto R. Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20536 people with cerebrovascular disease or other high-risk conditions. Lancet. 2004;363:757–67.PubMedCrossRefGoogle Scholar
  22. 22.
    Amarenco P, Steg PG. The paradox of cholesterol and stroke. Lancet. 2007;370:1803–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Cholesterol Treatment Trialists’ (CTT) Collaborators, Kearney PM, Blackwell L, Collins R, Keech A, Simes J, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Teasdale GM, Murray GD, Nicoll JAR. The association between APOE epsilon4, age and outcome after head injury: a prospective cohort study. Brain. 2005;128:2556–61.PubMedCrossRefGoogle Scholar
  25. 25.
    Jordan BD, Relkin NR, Ravdin LD, Jacobs AR, Bennett A, Gandy S. Apolipoprotein E epsilon4 associated with chronic traumatic brain injury in boxing. JAMA. 1997;278:136–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Kääb S, Darbar D, van Noord C, Dupuis J, Pfeufer A, Newton-Cheh C, et al. Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eur Heart J. 2009;30:813–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Gretarsdottir S, Thorleifsson G, Manolescu A, Styrkarsdottir U, Helgadottir A, Gschwendtner A, et al. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol. 2008;64:402–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Gudbjartsson DF, Bjornsdottir US, Halapi E, Helgadottir A, Sulem P, Jonsdottir GM, et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet. 2009;41:342–7.PubMedCrossRefGoogle Scholar
  29. 29.
    McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Scheuner MT, Yoon PW, Khoury MJ. Contribution of Mendelian disorders to common chronic disease: opportunities for recognition, intervention, and prevention. Am J Med Genet C Semin Med Genet. 2004;125C:50–65.PubMedCrossRefGoogle Scholar
  31. 31.
    Goldstein DB. Common genetic variation and human traits. N Engl J Med. 2009;360:1696–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Kubo M, Hata J, Ninomiya T, Matsuda K, Yonemoto K, Nakano T, et al. A nonsynonymous SNP in PRKCH (protein kinase C eta) increases the risk of cerebral infarction. Nat Genet. 2007;39:212–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Hata J, Matsuda K, Ninomiya T, Yonemoto K, Matsushita T, Ohnishi Y, Saito S, et al. Functional SNP in an Sp1-binding site of AGTRL1 gene is associated with susceptibility to brain infarction. Hum Mol Genet. 2007;16:630–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Matarin M, Brown WM, Dena H, Britton A, De Vrieze FW, Brott TG, et al. Candidate gene polymorphisms for ischemic stroke. Stroke. 2009;40:3436–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Yamada Y, Fuku N, Tanaka M, Aoyagi Y, Sawabe M, Metoki N, et al. Identification of CELSR1 as a susceptibility gene for ischemic stroke in Japanese individuals by a genome-wide association study. Atherosclerosis. 2009;207:144–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Kim J, Chae YK. Genomewide association studies of stroke. N Engl J Med. 2009;361:722; author reply 722.PubMedCrossRefGoogle Scholar
  37. 37.
    Yasuno K, Bilguvar K, Bijlenga P, Low SK, Krischek B, Auburger G, et al. Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet. 2010;42:420–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Meschia JF. Stroke genome-wide association studies: the large numbers imperative. Stroke. 2010;41:579–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol. 2004;61:1652–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Peck G, Smeeth L, Whittaker J, Casas JP, Hingorani A, Sharma P. The genetics of primary haemorrhagic stroke, subarachnoid haemorrhage and ruptured intracranial aneurysms in adults. PLoS One. 2008;3:e3691.PubMedCrossRefGoogle Scholar
  41. 41.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.PubMedCrossRefGoogle Scholar
  42. 42.
    Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;409:928–33.PubMedCrossRefGoogle Scholar
  43. 43.
    International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437:1299–320.CrossRefGoogle Scholar
  44. 44.
    1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.CrossRefGoogle Scholar
  45. 45.
    Ragoussis J. Genotyping technologies for genetic research. Annu Rev Genomics Hum Genet. 2009;10:117–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Barrett JC, Cardon LR. Evaluating coverage of genome-wide association studies. Nat Genet. 2006;38:659–62.PubMedCrossRefGoogle Scholar
  47. 47.
    Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S, et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet. 2008;40:1253–60.PubMedCrossRefGoogle Scholar
  48. 48.
    McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet. 2008;40:1166–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.PubMedCrossRefGoogle Scholar
  50. 50.
    Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet. 2005;76:887–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Cox DG, Kraft P. Quantification of the power of Hardy-Weinberg equilibrium testing to detect genotyping error. Hum Hered. 2006;61:10–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Pe’er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol. 2008;32:381–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23:1294–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Gonzalez JR, Armengol L, Solé X, Guinó E, Mercader JM, Estivill X, et al. SNPassoc: an R package to perform whole genome association studies. Bioinformatics. 2007;23:644–5.PubMedGoogle Scholar
  55. 55.
    Soranzo N, Spector TD, Mangino M, Kühnel B, Rendon A, Teumer A, et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet. 2009;41:1182–90.PubMedCrossRefGoogle Scholar
  56. 56.
    Rivadeneira F, Styrkársdottir U, Estrada K, Halldórsson BV, Hsu YH, Richards JB, et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41:1199–206.PubMedCrossRefGoogle Scholar
  57. 57.
    Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA. 2009;106:9362–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009;84:210–23.PubMedCrossRefGoogle Scholar
  59. 59.
    Guan Y, Stephens M. Practical issues in imputation-based association mapping. PLoS Genet. 2008;4:e1000279.PubMedCrossRefGoogle Scholar
  60. 60.
    Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5:e1000529.PubMedCrossRefGoogle Scholar
  61. 61.
    Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.PubMedCrossRefGoogle Scholar
  62. 62.
    Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, Maier LM, et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet. 2005;37:1243–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Zeggini E, Ioannidis JP. Meta-analysis in genome-wide association studies. Pharmacogenomics. 2009;10:191–201.PubMedCrossRefGoogle Scholar
  64. 64.
    de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF, et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet. 2008;17:R122–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JP. Discovery properties of genome-wide association signals from cumulatively combined data sets. Am J Epidemiol. 2009;170:1197–206.PubMedCrossRefGoogle Scholar
  66. 66.
    Ioannidis JP, Patsopoulos NA, Evangelou E. Heterogeneity in meta-analyses of genome-wide association investigations. PLoS One. 2007;2:e841.PubMedCrossRefGoogle Scholar
  67. 67.
    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190.PubMedCrossRefGoogle Scholar
  69. 69.
    Davey Smith G, Ebrahim S. “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.CrossRefGoogle Scholar
  70. 70.
    Casas JP, Bautista LE, Smeeth L, Sharma P, Hingorani AD. Homocysteine and stroke: evidence on a causal link from mendelian randomisation. Lancet. 2005;365:224–32.PubMedGoogle Scholar
  71. 71.
    Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 2002;30:3894–900.PubMedCrossRefGoogle Scholar
  72. 72.
    Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11:863–74.PubMedCrossRefGoogle Scholar
  73. 73.
    Chasman D, Adams RM. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation. J Mol Biol. 2001;307:683–706.PubMedCrossRefGoogle Scholar
  74. 74.
    Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Lopez-Bigas N, Audit B, Ouzounis C, Parra G, Guigo R. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett. 2005;579:1900–3.PubMedCrossRefGoogle Scholar
  76. 76.
    Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell. 2009;136:777–93.PubMedCrossRefGoogle Scholar
  77. 77.
    Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, Burge CB, et al. Systematic identification and analysis of exonic splicing silencers. Cell. 2004;119:831–45.PubMedCrossRefGoogle Scholar
  78. 78.
    Wang J, Smith PJ, Krainer AR, Zhang MQ. Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes. Nucleic Acids Res. 2005;33:5053–62.PubMedCrossRefGoogle Scholar
  79. 79.
    Wang Z, Burge CB. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA. 2008;14:802–13.PubMedCrossRefGoogle Scholar
  80. 80.
    Ge B, Pokholok DK, Kwan T, Grundberg E, Morcos L, Verlaan DJ, et al. Global patterns of cis variation in human cells revealed by high-density allelic expression analysis. Nat Genet. 2009;41:1216–22.PubMedCrossRefGoogle Scholar
  81. 81.
    Pastinen T, Sladek R, Gurd S, Sammak A, Ge B, Lepage P, et al. A survey of genetic and epigenetic variation affecting human gene expression. Physiol Genomics. 2004;16:184–93.PubMedGoogle Scholar
  82. 82.
    Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, et al. Genetics of gene expression and its effect on disease. Nature. 2008;452:423–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 2008;6:e107.PubMedCrossRefGoogle Scholar
  84. 84.
    Chasman DI, Paré G, Ridker PM. Population-based genome-wide genetic analysis of common clinical chemistry analytes. Clin Chem. 2009;55:39–51.PubMedCrossRefGoogle Scholar
  85. 85.
    Ridker PM, Pare G, Parker A, Zee RY, Danik JS, Buring JE, et al. Loci related to metabolic-syndrome pathways including LEPR, HNF1A, IL6R, and GCKR associate with plasma C-reactive protein: the Women’s Genome Health Study. Am J Hum Genet. 2008;82:1185–92.PubMedCrossRefGoogle Scholar
  86. 86.
    Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, Hehl R, et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003;31:374–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Chen W, Liang L, Abecasis GR. GWAS GUI: graphical browser for the results of whole-genome association studies with high-dimensional phenotypes. Bioinformatics. 2009;25:284–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PI. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24:2938–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Helgadottir A, Thorleifsson G, Magnusson KP, Grétarsdottir S, Steinthorsdottir V, Manolescu A, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40:217–24.PubMedCrossRefGoogle Scholar
  91. 91.
    Takeuchi F, Isono M, Katsuya T, Yamamoto K, Yokota M, Sugiyama T, et al. Blood pressure and hypertension are associated with 7 loci in the Japanese population. Circulation. 2010;121:2302–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–97.PubMedCrossRefGoogle Scholar
  93. 93.
    Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41:334–41.PubMedCrossRefGoogle Scholar
  94. 94.
    Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.PubMedCrossRefGoogle Scholar
  95. 95.
    Murray CJL, Phil D. Failure to validate association between 12p13 variants and ischemic stroke. N Engl J Med. 2010;362:1547–50.CrossRefGoogle Scholar
  96. 96.
    Rabbee N, Speed TP. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics. 2006;22:7–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Genetic and Molecular Epidemiology LaboratoryMcMaster UniversityHamiltonCanada
  2. 2.Population Health Research Institute, David Braley Cardiac Vascular and Stroke Research InstituteHamiltonCanada
  3. 3.Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonCanada

Personalised recommendations