Advertisement

Candidate Gene Association Studies in Stroke

  • Elizabeth G. Holliday
  • Christopher J. Oldmeadow
  • Jane M. Maguire
  • John Attia
Chapter

Abstract

This chapter describes the strategy of association studies that can be used to characterize the genetics of stroke. It explains advantages and disadvantages of the method and discusses current evidence of the genes that have been associated with stroke.

Keywords

Ischemic Stroke Population Stratification Genetic Association Study MTHFR Gene Mendelian Randomization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ. A navigator for human genome epidemiology. Nat Genet. 2008;40(2):124–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.CrossRefGoogle Scholar
  3. 3.
    Bersano A, Ballabio E, Bresolin N, Candelise L. Genetic polymorphisms for the study of multifactorial stroke. Hum Mutat. 2008;29(6):776–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol. 2004;61(11):1652–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Stankovi S, Majki-Singh N. Advances in the genetic basis of ischemic stroke. J Med Biochem. 2008;27(2):123–34.CrossRefGoogle Scholar
  6. 6.
    Laird NM, Lange C. Family-based designs in the age of large-scale gene-association studies. Nat Rev Genet. 2006;7(5):385–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Laird NM, Lange C. Family-based methods for linkage and association analysis. Adv Genet. 2008;60:219–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Meschia JF, Kissela BM, Brott TG, Brown Jr RD, Worrall BB, Beck J, et al. The siblings with ischemic stroke study (SWISS): a progress report. Clin Med Res. 2006;4(1):12–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Meschia JF, Nalls M, Matarin M, Brott TG, Brown Jr RD, Hardy J, et al. Siblings with ischemic stroke study: results of a genome-wide scan for stroke loci. Stroke. 2011;42(10):2726–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Attia J, Ioannidis JPA, Thakkinstian A, McEvoy M, Scott RJ, Minelli C, et al. How to use an article about genetic association: A: background concepts. JAMA. 2009;301:74–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Colhoun HM, McKeigue PM, Davey Smith G. Problems of reporting genetic associations with complex outcomes. Lancet. 2003;361(9360):865–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Dichgans M, Markus HS. Genetic association studies in stroke: methodological issues and proposed standard criteria. Stroke. 2005;36(9):2027–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Pruissen DM, Kappelle LJ, Rosendaal FR, Algra A. Genetic association studies in ischaemic stroke: replication failure and prospects. Cerebrovasc Dis. 2009;27(3):290–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, et al. STrengthening the REporting of Genetic Association studies (STREGA)–an extension of the STROBE statement. Eur J Clin Invest. 2009;39(4):247–66.PubMedCrossRefGoogle Scholar
  15. 15.
    Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006;7(10):781–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Pompanon F, Bonin A, Bellemain E, Taberlet P. Genotyping errors: causes, consequences and solutions. Nat Rev Genet. 2005;6(11):847–59.PubMedCrossRefGoogle Scholar
  17. 17.
    Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, Maier LM, et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet. 2005;37(11):1243–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11(10):733–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Thomas DC, Witte JS. Point: population stratification: a problem for case-control studies of candidate-gene associations? Cancer Epidemiol Biomarkers Prev. 2002;11(6):505–12.PubMedGoogle Scholar
  20. 20.
    Wacholder S, Rothman N, Caporaso N. Counterpoint: bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer. Cancer Epidemiol Biomarkers Prev. 2002;11(6):513–20.PubMedGoogle Scholar
  21. 21.
    Khlat M, Cazes MH, Genin E, Guiguet M. Robustness of case-control studies of genetic factors to population stratification: magnitude of bias and type I error. Cancer Epidemiol Biomarkers Prev. 2004;13(10):1660–4.PubMedGoogle Scholar
  22. 22.
    Wacholder S, Rothman N, Caporaso N. Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J Natl Cancer Inst. 2000;92(14):1151–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Association mapping in structured populations. Am J Hum Genet. 2000;67(1):170–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55(4):997–1004.PubMedCrossRefGoogle Scholar
  25. 25.
    Bacanu SA, Devlin B, Roeder K. Association studies for quantitative traits in structured populations. Genet Epidemiol. 2002;22(1):78–93.PubMedCrossRefGoogle Scholar
  26. 26.
    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Bardoczy Z, Gyorffy B, Kocsis I, Vasarhelyi B. Re-calculated Hardy-Weinberg values in papers published in atherosclerosis between 1995 and 2003. Atherosclerosis. 2004;173(1):141–3.PubMedCrossRefGoogle Scholar
  28. 28.
    Sen S, Burmeister M. Hardy-Weinberg analysis of a large set of published association studies reveals genotyping error and a deficit of heterozygotes across multiple loci. Hum Genomics. 2008;3(1):36–52.PubMedGoogle Scholar
  29. 29.
    Attia J, Thakkinstian A, McElduff P, Milne E, Dawson S, Scott RJ, et al. Detecting genotyping error using measures of degree of Hardy-Weinberg disequilibrium. Stat Appl Genet Mol Biol. 2010;9(1):Article 5.PubMedGoogle Scholar
  30. 30.
    Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JP. Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol. 2006;163(4):300–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.PubMedCrossRefGoogle Scholar
  32. 32.
    Meschia JF. Addressing the heterogeneity of the ischemic stroke phenotype in human genetics research. Stroke. 2002;33(12):2770–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet. 2001;29(3):306–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet. 2003;33(2):177–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, et al. Replicating genotype-phenotype associations. Nature. 2007;447(7145):655–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Lin E, Hsu SY. A Bayesian approach to gene-gene and gene-environment interactions in chronic fatigue syndrome. Pharmacogenomics. 2009;10(1):35–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith JG, Melander O, Lovkvist H, Hedblad B, Engstrom G, Nilsson P, et al. Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: a large-scale genetic association study. Circ Cardiovasc Genet. 2009;2(2):159–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Gschwendtner A, Bevan S, Cole JW, Plourde A, Matarin M, Ross-Adams H, et al. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol. 2009;65(5):531–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Anderson CD, Biffi A, Rost NS, Cortellini L, Furie KL, Rosand J. Chromosome 9p21 in ischemic stroke: population structure and meta-analysis. Stroke. 2010;41(6):1123–31.PubMedCrossRefGoogle Scholar
  40. 40.
    On beyond GWAS. Nat Genet. 2010;42(7):551.Google Scholar
  41. 41.
    Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet. 1986;1(8479):507–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Gray R, Wheatley K. How to avoid bias when comparing bone marrow transplantation with chemotherapy. Bone Marrow Transplant. 1991;7 Suppl 3:9–12.PubMedGoogle Scholar
  43. 43.
    Capon F, Allen MH, Ameen M, Burden AD, Tillman D, Barker JN, et al. A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Hum Mol Genet. 2004;13(20):2361–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Thakkinstian A, McElduff P, D’Este C, Duffy D, Attia J. A method for meta-analysis of molecular association studies. Stat Med. 2005;24(9):1291–306.PubMedCrossRefGoogle Scholar
  45. 45.
    Trikalinos TA, Salanti G, Zintzaras E, Ioannidis JP. Meta-analysis methods. Adv Genet. 2008;60:311–34.PubMedCrossRefGoogle Scholar
  46. 46.
    Zintzaras E, Lau J. Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches. J Clin Epidemiol. 2008;61(7):634–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Thakkinstian A, Thompson JR, Minelli C, Attia J. Choosing between per-genotype, per-allele, and trend approaches for initial detection of gene-disease association. J Appl Stat. 2009;36(6):633–46.CrossRefGoogle Scholar
  48. 48.
    Minelli C, Thompson JR, Abrams KR, Thakkinstian A, Attia J. The choice of a genetic model in the meta-analysis of molecular association studies. Int J Epidemiol. 2005;34(6):1319–28.PubMedCrossRefGoogle Scholar
  49. 49.
    Salanti G, Southam L, Altshuler D, Ardlie K, Barroso I, Boehnke M, et al. Underlying genetic models of inheritance in established type 2 diabetes associations. Am J Epidemiol. 2009;170(5):537–45.PubMedCrossRefGoogle Scholar
  50. 50.
    Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.PubMedCrossRefGoogle Scholar
  51. 51.
    Greene CS, Penrod NM, Williams SM, Moore JH. Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS One. 2009;4(6):e5639.PubMedCrossRefGoogle Scholar
  52. 52.
    Ioannidis JP, Ntzani EE, Trikalinos TA. ‘Racial’ differences in genetic effects for complex diseases. Nat Genet. 2004;36(12):1312–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Moonesinghe R, Khoury MJ, Liu T, Ioannidis JP. Required sample size and nonreplicability thresholds for heterogeneous genetic associations. Proc Natl Acad Sci USA. 2008;105(2):617–22.PubMedCrossRefGoogle Scholar
  54. 54.
    Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JP. Discovery properties of genome-wide association signals from cumulatively combined data sets. Am J Epidemiol. 2009;170(10):1197–206.PubMedCrossRefGoogle Scholar
  55. 55.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.PubMedCrossRefGoogle Scholar
  56. 56.
    Chapter 7: publication bias. In: Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F, editors. Methods for meta-analysis in medical research. West Sussex: Wiley; 2000.Google Scholar
  57. 57.
    Sterne JAC, Egger M, Smith GD. Investigating and dealing with publication and other biases. In: Egger M, Smith GD, Altman DG, editors. Systematic reviews in health care. 2nd ed. London: BMJ Books; 2001.Google Scholar
  58. 58.
    Maguire J, Sturm J, Levi C, Thakkinstian A, Whyte S, Attia J. Polymorphisms in platelet glycoprotein 1bα and factor VII and risk of ischemic stroke. A meta-analysis. Stroke. 2008;39:1710–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Lin PI, Vance JM, Pericak-Vance MA, Martin ER. No gene is an island: the flip-flop phenomenon. Am J Hum Genet. 2007;80(3):531–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Clarke GM, Cardon LR. Aspects of observing and claiming allele flips in association studies. Genet Epidemiol. 2010;34(3):266–74.PubMedGoogle Scholar
  61. 61.
    Maguire JM, Thakkinstian A, Sturm J, Levi C, Lincz L, Parsons M, et al. Polymorphisms in platelet glycoprotein 1balpha and factor VII and risk of ischemic stroke: a meta-analysis. Stroke. 2008;39(6):1710–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Minelli C, Thompson JR, Abrams KR, Thakkinstian A, Attia J. The quality of meta-analyses of genetic association studies: a review with recommendations. Am J Epidemiol. 2009;170(11):1333–43.PubMedCrossRefGoogle Scholar
  63. 63.
    Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, et al. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet. 2006;38(4):458–62.PubMedCrossRefGoogle Scholar
  65. 65.
    Thakkinstian A, McKay GJ, McEvoy M, Chakravarthy U, Chakrabarti S, Silvestri G, et al. Systematic review and meta-analysis of the association between complement component 3 and age-related macular degeneration: a HUGE review and meta-analysis. Am J Epidemiol. 2011;173:1365–79.PubMedCrossRefGoogle Scholar
  66. 66.
    Thanassoulis G, O’Donnell CJ. Mendelian randomisation. UptoDate. Wolters Kluwer Health.Google Scholar
  67. 67.
    Armitage JM, Bowman L, Clarke RJ, Wallendszus K, Bulbulia R, Rahimi K, et al. Effects of homocysteine-lowering with folic acid plus vitamin B12 vs placebo on mortality and major morbidity in myocardial infarction survivors: a randomized trial. JAMA. 2010;303(24):2486–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Elizabeth G. Holliday
    • 1
  • Christopher J. Oldmeadow
    • 2
  • Jane M. Maguire
    • 3
  • John Attia
    • 4
  1. 1.Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, Faculty of HealthUniversity of NewcastleCallaghanAustralia
  2. 2.School of Medicine and Public Health, Faculty of HealthUniversity of NewcastleNewcastleAustralia
  3. 3.School of Nursing and MidwiferyUniversity of NewcastleCallaghanAustralia
  4. 4.Department of MedicineJohn Hunter Hospital, University of NewcastleNew LambtonAustralia

Personalised recommendations