White Matter Disease

  • Natalia S. Rost


With widespread availability of MRI, white matter disease is increasingly being recognized. This chapter summarizes the epidemiology of this condition and describes the genetics that could play a part in its etiology.


Cerebral Amyloid Angiopathy White Matter Hyperintensity White Matter Disease Family Heart Study White Matter Hyperintensity Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Acknowledgments and Funding

Dr. Natalia S. Rost is supported by the National Institute of Neurological Disorders and Stroke (NINDS) (K23NS064052), the Massachusetts General Hospital Dean Institute for Integrative Study of Atrial Fibrillation and Stroke, and the Genzyme Co.


  1. 1.
    Rost N. Just in time: an update on continuum neurogenetics. Continuum: Lifelong Learn Neurol. 2011;17(2):245.Google Scholar
  2. 2.
    Schmidt R, Enzinger C, Ropele S, Schmidt H, Fazekas F. Progression of cerebral white matter lesions: 6-year results of the Austrian Stroke Prevention Study. Lancet. 2003;361(9374):2046.CrossRefGoogle Scholar
  3. 3.
    Turner ST, Jack CR, Fornage M, Mosley TH, Boerwinkle E, de Andrade M. Heritability of leukoaraiosis in hypertensive sibships. Hypertension. 2004;43(2):483–7.CrossRefGoogle Scholar
  4. 4.
    de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry. 2001;70(1):9–14.CrossRefGoogle Scholar
  5. 5.
    Schmidt R, Fazekas F, Kapeller P, Schmidt H, Hartung HP. MRI white matter hyperintensities: three-year follow-up of the Austrian Stroke Prevention Study. Neurology. 1999;53(1):132–9.CrossRefGoogle Scholar
  6. 6.
    Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. Stroke. 1997;28(3):652–9.CrossRefGoogle Scholar
  7. 7.
    Young VG, Halliday GM, Kril JJ. Neuropathologic correlates of white matter hyperintensities. Neurology. 2008;71(11):804–11.CrossRefGoogle Scholar
  8. 8.
    Longstreth WT, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people: the cardiovascular health study. Stroke. 1996;27(8):1274–82.CrossRefGoogle Scholar
  9. 9.
    de Leeuw FE, de Groot JC, Bots ML, Witteman JC, Oudkerk M, Hofman A, et al. Carotid atherosclerosis and cerebral white matter lesions in a population based magnetic resonance imaging study. J Neurol. 2000;247(4):291–6.CrossRefGoogle Scholar
  10. 10.
    Hassan A, Hunt BJ, O’Sullivan M, Bell R, D’Souza R, Jeffery S, et al. Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction. Brain. 2004;127(Pt 1):212–9.CrossRefGoogle Scholar
  11. 11.
    Wright CB, Paik MC, Brown TR, Stabler SP, Allen RH, Sacco RL, et al. Total homocysteine is associated with white matter hyperintensity volume: the Northern Manhattan Study. Stroke. 2005;36(6):1207–11.CrossRefGoogle Scholar
  12. 12.
    Jeerakathil T, Wolf PA, Beiser A, Massaro J, Seshadri S, D’Agostino RB, et al. Stroke risk profile predicts white matter hyperintensity volume: the Framingham Study. Stroke. 2004;35(8):1857–61.CrossRefGoogle Scholar
  13. 13.
    Schmidt R, Enzinger C, Ropele S, Schmidt H, Fazekas F. Progression of cerebral white matter lesions: 6-year results of the Austrian Stroke Prevention Study. Lancet. 2003;361(9374):2046–8.CrossRefGoogle Scholar
  14. 14.
    Longstreth Jr WT, Arnold AM, Beauchamp Jr NJ, Manolio TA, Lefkowitz D, Jungreis C, et al. Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study. Stroke. 2005;36(1):56–61.CrossRefGoogle Scholar
  15. 15.
    Markus HS, Hunt B, Palmer K, Enzinger C, Schmidt H, Schmidt R. Markers of endothelial and hemostatic activation and progression of cerebral white matter hyperintensities: longitudinal results of the Austrian Stroke Prevention Study. Stroke. 2005;36(7):1410–4.CrossRefGoogle Scholar
  16. 16.
    van Dijk EJ, Prins ND, Vermeer SE, Vrooman HA, Hofman A, Koudstaal PJ, et al. C-reactive protein and cerebral small-vessel disease: the Rotterdam Scan Study. Circulation. 2005;112(6):900–5.CrossRefGoogle Scholar
  17. 17.
    Brun A, Englund E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann Neurol. 1986;19:253–62.CrossRefGoogle Scholar
  18. 18.
    Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, Radner H, Lechner H. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43:1683–9.CrossRefGoogle Scholar
  19. 19.
    Fernando MS, O’Brien JT, Perry RH, English P, Forster G, McMeekin W, Slade JY, Golkhar A, Matthews FE, Barber R, Kalaria RN, Ince PG. Comparison of the pathology of cerebral white matter with post-mortem magnetic resonance imaging (MRI) in the elderly brain. Neuropathol Appl Neurobiol. 2004;30:385–95.CrossRefGoogle Scholar
  20. 20.
    Opherk C, Peters N, Holtmannspotter M, Gschwendtner A, Muller-Myhsok B, Dichgans M. Heritability of MRI lesion volume in CADASIL: evidence for genetic modifiers. Stroke. 2006;37(11):2684–9.CrossRefGoogle Scholar
  21. 21.
    Kalaria RN, Viitanen M, Kalimo H, Dichgans M, Tabira T. The pathogenesis of cadasil: an update. J Neurol Sci. 2004;226:35–9.CrossRefGoogle Scholar
  22. 22.
    Haglund M, Englund E. Cerebral amyloid angiopathy, white matter lesions and Alzheimer encephalopathy – a histopathological assessment. Dement Geriatr Cogn Disord. 2002;14(3):161–6.CrossRefGoogle Scholar
  23. 23.
    Tian J, Shi J, Bailey K, Mann DM. Relationships between arteriosclerosis, cerebral amyloid angiopathy and myelin loss from cerebral cortical white matter in alzheimer’s disease. Neuropathol Appl Neurobiol. 2004;30:46–56.CrossRefGoogle Scholar
  24. 24.
    Fernando MS, Simpson JE, Matthews F, Brayne C, Lewis CE, Barber R, et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury * annex - supplemental online-only content. Stroke. 2006;37(6):1391–8.CrossRefGoogle Scholar
  25. 25.
    Manolio TA, Burke GL, O’Leary DH, Evans G, Beauchamp N, Knepper L, et al. Relationships of cerebral MRI findings to ultrasonographic carotid atherosclerosis in older adults: the Cardiovascular Health Study. Arterioscler Thromb Vasc Biol. 1999;19(2):356–65.CrossRefGoogle Scholar
  26. 26.
    Kuller LH, Longstreth Jr WT, Arnold AM, Bernick C, Bryan RN, Beauchamp Jr NJ. White matter hyperintensity on cranial magnetic resonance imaging: a predictor of stroke. Stroke. 2004;35(8):1821–5.CrossRefGoogle Scholar
  27. 27.
    Wolfson L, Wei X, Hall CB, Panzer V, Wakefield D, Benson RR, et al. Accrual of MRI white matter abnormalities in elderly with normal and impaired mobility. J Neurol Sci. 2005;232(1–2):23.CrossRefGoogle Scholar
  28. 28.
    Prins ND, van Dijk EJ, den Heijer T, Vermeer SE, Koudstaal PJ, Oudkerk M, et al. Cerebral white matter lesions and the risk of dementia. Arch Neurol. 2004;61(10):1531–4.CrossRefGoogle Scholar
  29. 29.
    de Groot JC, de Leeuw FE, Oudkerk M, Hofman A, Jolles J, Breteler MM. Cerebral white matter lesions and subjective cognitive dysfunction: the Rotterdam Scan Study. Neurology. 2001;56(11):1539–45.CrossRefGoogle Scholar
  30. 30.
    O’Brien JT, Firbank MJ, Krishnan MS, van Straaten ECW, van der Flier WM, Petrovic K, et al. White matter hyperintensities rather than lacunar infarcts are associated with depressive symptoms in older people: the LADIS Study. Am J Geriatr Psychiatry. 2006;14(10):834–41.CrossRefGoogle Scholar
  31. 31.
    Neumann-Haefelin T, Hoelig S, Berkefeld J, Fiehler J, Gass A, Humpich M, et al. Leukoaraiosis is a risk factor for symptomatic intracerebral hemorrhage after thrombolysis for acute stroke. Stroke. 2006;37(10):2463–6.CrossRefGoogle Scholar
  32. 32.
    Ay H, Arsava EM, Rosand J, Furie KL, Singhal AB, Schaefer PW, Wu O, Gonzalez RG, Koroshetz WJ, Sorensen AG. Severity of leukoaraiosis and susceptibility to infarct growth in acute stroke. Stroke. 2008;39(5):1409–13.CrossRefGoogle Scholar
  33. 33.
    Arsava EM, Rahman R, Rosand J, Lu S, Rost NS, Smith EE, Singhal AB, Lev MH, Furie KL, Koroshetz WJ, Sorensen AG, Ay H. Severity of leukoaraiosis predicts clinical outcome after ischemic stroke. Stroke. 2009;72(16):1403–10.Google Scholar
  34. 34.
    Kissela B, Lindsell CJ, Kleindorfer D, Alwell K, Moomaw CJ, Woo D, et al. Clinical prediction of functional outcome after ischemic stroke: the surprising importance of periventricular white matter disease and race. Stroke. 2009;40(2):530–6.CrossRefGoogle Scholar
  35. 35.
    Breteler MMB, van Swieten JC, Bots ML, Grobbee DE, Claus JJ, van den Hout JHW, et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study. Neurology. 1994;44(7):1246–52.CrossRefGoogle Scholar
  36. 36.
    Liao D, Cooper L, Cai J, Toole JF, Bryan NR, Hutchinson RG, et al. Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control: the ARIC Study. Stroke. 1996;27(12):2262–70.CrossRefGoogle Scholar
  37. 37.
    Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study. Stroke. 1991;22(3):312–8.CrossRefGoogle Scholar
  38. 38.
    Khatri M, Wright CB, Nickolas TL, Yoshita M, Paik MC, Kranwinkel G, et al. Chronic kidney disease is associated with white matter hyperintensity volume: the Northern Manhattan Study (NOMAS). Stroke. 2007;38(12):3121–6.CrossRefGoogle Scholar
  39. 39.
    Ikram MA, Vernooij MW, Hofman A, Niessen WJ, van der Lugt A, Breteler MMB. Kidney function is related to cerebral small vessel disease. Stroke. 2008;39(1):55–61.CrossRefGoogle Scholar
  40. 40.
    Rost NS, Rahman R, Sonni S, Kanakis A, Butler C, Massasa E, et al. Determinants of white matter hyperintensity volume in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis. 2010;19(3):230–5.CrossRefGoogle Scholar
  41. 41.
    Jimenez-Conde J, Biffi A, Rahman R, Kanakis A, Butler C, Sonni S, et al. Hyperlipidemia and reduced white matter hyperintensity volume in patients with ischemic stroke. Stroke. 2010;41(3):437–42.CrossRefGoogle Scholar
  42. 42.
    DeCarli C, Fletcher E, Ramey V, Harvey D, Jagust WJ. Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke. 2005;36(1):50–5.CrossRefGoogle Scholar
  43. 43.
    Rost NS, Rahman RM, Biffi A, Smith EE, Kanakis A, Fitzpatrick K, et al. White matter hyperintensity volume is increased in small vessel stroke subtypes. Neurology. 2010;75(19):1670–7.CrossRefGoogle Scholar
  44. 44.
    Greenberg SM. Small vessels, big problems. N Engl J Med. 2006;354(14):1451–3.CrossRefGoogle Scholar
  45. 45.
    Leys D, Englund E, Del Ser T, Inzitari D, Fazekas F, Bornstein N, et al. White matter changes in stroke patients. Relationship with stroke subtype and outcome. Eur Neurol. 1999;42(2):67–75.CrossRefGoogle Scholar
  46. 46.
    Hijdra A, Verbeeten Jr B, Verhulst JA. Relation of leukoaraiosis to lesion type in stroke patients. Stroke. 1990;21(6):890–4.CrossRefGoogle Scholar
  47. 47.
    Chen X, Wen W, Anstey KJ, Sachdev PS. Prevalence, incidence, and risk factors of lacunar infarcts in a community sample. Neurology. 2009;73(4):266–72.CrossRefGoogle Scholar
  48. 48.
    Potter GM, Doubal FN, Jackson CA, Chappell FM, Sudlow CL, Dennis MS, et al. Counting cavitating lacunes underestimates the burden of lacunar infarction. Stroke. 2010;41(2):267–72.CrossRefGoogle Scholar
  49. 49.
    O’Sullivan M. Leukoaraiosis. Pract Neurol. 2008;8(1):26–38.CrossRefGoogle Scholar
  50. 50.
    Khan U, Porteous L, Hassan A, Markus HS. Risk factor profile of cerebral small vessel disease and its subtypes. J Neurol Neurosurg Psychiatry. 2007;78(7):702–6.CrossRefGoogle Scholar
  51. 51.
    Carmelli D, DeCarli C, Swan GE, Jack LM, Reed T, Wolf PA, et al. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke. 1998;29(6):1177–81.CrossRefGoogle Scholar
  52. 52.
    Atwood LD, Wolf PA, Heard-Costa NL, Massaro JM, Beiser A, D’Agostino RB, et al. Genetic variation in white matter hyperintensity volume in the Framingham study. Stroke. 2004;35(7):1609–13.CrossRefGoogle Scholar
  53. 53.
    Kochunov P, Glahn D, Winkler A, Duggirala R, Olvera RL, Cole S, et al. Analysis of genetic variability and whole genome linkage of whole-brain, subcortical, and ependymal hyperintense white matter volume. Stroke. 2009;40(12):3685–90.CrossRefGoogle Scholar
  54. 54.
    Schmidt R, Schmidt H, Fazekas F, Kapeller P, Roob G, Lechner A, et al. MRI cerebral white matter lesions and paraoxonase PON1 polymorphisms: three-year follow-up of the Austrian Stroke Prevention Study. Arterioscler Thromb Vasc Biol. 2000;20(7):1811–6.CrossRefGoogle Scholar
  55. 55.
    Schmidt R, Schmidt H, Fazekas F, Launer LJ, Niederkorn K, Kapeller P, et al. Angiotensinogen polymorphism M235T, carotid atherosclerosis, and small-vessel disease-related cerebral abnormalities. Hypertension. 2001;38(1):110–5.CrossRefGoogle Scholar
  56. 56.
    Hassan A, Lansbury A, Catto AJ, Guthrie A, Spencer J, Craven C, et al. Angiotensin converting enzyme insertion/deletion genotype is associated with leukoaraiosis in lacunar syndromes. J Neurol Neurosurg Psychiatry. 2002;72(3):343–6.CrossRefGoogle Scholar
  57. 57.
    Sierra CCA, Gomez-Angelats E, Poch E, Sobrino J, de la Sierra A. Renin-angiotensin system genetic polymorphisms and cerebral white matter lesions in essential hypertension. Hypertension. 2002;39:343–7.CrossRefGoogle Scholar
  58. 58.
    Hassan A, Gormley K, O’Sullivan M, Knight J, Sham P, Vallance P, et al. Endothelial nitric oxide gene haplotypes and risk of cerebral small-vessel disease. Stroke. 2004;35(3):654–9.CrossRefGoogle Scholar
  59. 59.
    Henskens LHG, Kroon AA, van Boxtel MPJ, Hofman PAM, de Leeuw PW. Associations of the angiotensin ii type 1 receptor a1166c and the endothelial no synthase g894t gene polymorphisms with silent subcortical white matter lesions in essential hypertension. Stroke. 2005;36:1869–73.CrossRefGoogle Scholar
  60. 60.
    de Leeuw F-ERF, de Groot JC, van Duijn CM, Hofman A, van Gijn J, Breteler MMB. Interaction between hypertension, apoe, and cerebral white matter lesions. Stroke. 2004;35:1057–60.CrossRefGoogle Scholar
  61. 61.
    DeStefano AL, Atwood LD, Massaro JM, Heard-Costa N, Beiser A, Au R, et al. Genome-wide scan for white matter hyperintensity: the Framingham Heart Study. Stroke. 2006;37(1):77–81.CrossRefGoogle Scholar
  62. 62.
    Turner ST, Fornage M, Jack Jr CR, Mosley TH, Kardia SLR, Boerwinkle E, et al. Genomic susceptibility loci for brain atrophy in hypertensive sibships from the GENOA Study. Hypertension. 2005;45(4):793–8.CrossRefGoogle Scholar
  63. 63.
    Kochunov P, Glahn D, Lancaster J, Winkler A, Kent JW, Olvera RL, et al. Whole brain and regional hyperintense white matter volume and blood pressure. Stroke. 2010;41(10):2137–42.CrossRefGoogle Scholar
  64. 64.
    Lifton RP. Molecular genetics of human blood pressure variation. Science. 1996;272:676–80.CrossRefGoogle Scholar
  65. 65.
    Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest. 2003;111:1795–803.Google Scholar
  66. 66.
    Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273(5281):1516–7.CrossRefGoogle Scholar
  67. 67.
    Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet D, Hudson TJ, Daly M, Groop L, Lander ES. The common PPARgamma pro12ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26:76–80.CrossRefGoogle Scholar
  68. 68.
    Assareh A, Mather KA, Schofield PR, Kwok JBJ, Sachdev PS. The genetics of white matter lesions. CNS Neurosci Ther. 2010;17(5):525–40.CrossRefGoogle Scholar
  69. 69.
    Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6(2):95.CrossRefGoogle Scholar
  70. 70.
    deBakker P, Rosand J. In search of genes for stroke. Lancet Neurol. 2007;6(5):383–4.CrossRefGoogle Scholar
  71. 71.
    Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 Mutations in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a Mendelian condition causing stroke and vascular dementia. [Review] [10 refs]. Ann N Y Acad Sci. 1997;826(213):213–7.CrossRefGoogle Scholar
  72. 72.
    Jung HH, Bassetti C, Tournier-Lasserve E, Vahedi K, Arnaboldi M, Arifi VB, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a clinicopathological and genetic study of a Swiss family. J Neurol Neurosurg Psychiatry. 1995;59(2):138–43.CrossRefGoogle Scholar
  73. 73.
    Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia [see comments]. Nature. 1996;383(6602):707–10.CrossRefGoogle Scholar
  74. 74.
    Markus HS, Martin RJ, Simpson MA, Dong YB, Ali N, Crosby AH, et al. Diagnostic strategies in CADASIL. Neurology. 2002;59(8):1134–8.CrossRefGoogle Scholar
  75. 75.
    Dichgans M. Genetics of ischaemic stroke. Lancet Neurol. 2007;6(2):149.CrossRefGoogle Scholar
  76. 76.
    Oberstein SAJL, van den Boom R, Middelkoop HAM, Ferrari MD, Knaap YM, van Houwelingen HC, et al. Incipient CADASIL. Arch Neurol. 2003;60(5):707–12.CrossRefGoogle Scholar
  77. 77.
    Schmidt R, Schmidt H, Haybaeck J, Loitfelder M, Weis S, Cavalieri M, et al. Heterogeneity in age-related white matter changes. Acta Neuropathol. 2011;122(2):171.CrossRefGoogle Scholar
  78. 78.
    Schmidt H, Zeginigg M, Wiltgen M, Freudenberger P, Petrovic K, Cavalieri M, et al. Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease. Brain. 2011;134(11):3384–97.CrossRefGoogle Scholar
  79. 79.
    Dichgans M, Mayer M, Uttner I, et al. The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol. 1998;44(5):731–9.CrossRefGoogle Scholar
  80. 80.
    Opherk C, Peters N, Herzog J, Luedtke R, Dichgans M. Long-term prognosis and causes of death in CADASIL: a retrospective study in 411 patients. Brain. 2004;127(11):2533–9.CrossRefGoogle Scholar
  81. 81.
    Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol. 1984;16(4):481–8.CrossRefGoogle Scholar
  82. 82.
    Majamaa K, Moilanen JS, Uimonen S, Remes AM, Salmela PI, KÃrppà M, et al. Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet. 1998;63(2):447.CrossRefGoogle Scholar
  83. 83.
    Fujii T, Okuno T, Ito M, Motoh K, Hamazaki S, Okada S, Kusaka H, Mikawa H. CT, MRI, and autopsy findings in brain of a patient with MELAS. Pediatr Neurol. 1990;6(4):253–6.CrossRefGoogle Scholar
  84. 84.
    Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A, et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet. 2012;44(2):200.CrossRefGoogle Scholar
  85. 85.
    Axelsson R, Röyttä M, Sourander P, Akesson HO, Andersen O. Hereditary diffuse leucoencephalopathy with spheroids. Acta Psychiatr Scand Suppl. 1984;314:1–65.Google Scholar
  86. 86.
    Wider C, Van Gerpen JA, DeArmond S, Shuster EA, Dickson DW, Wszolek ZK. Leukoencephalopathy with spheroids (HDLS) and pigmentary leukodystrophy (POLD). Neurology. 2009;72(22):1953–9.CrossRefGoogle Scholar
  87. 87.
    Freeman SH, Hyman BT, Sims KB, Hedley-Whyte ET, Vossough A, Frosch MP, et al. Adult onset leukodystrophy with neuroaxonal spheroids: clinical, neuroimaging and neuropathologic observations. Brain Pathol. 2009;19(1):39.CrossRefGoogle Scholar
  88. 88.
    Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NlP, Roos C, et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med. 2008;358(12):1240–9.CrossRefGoogle Scholar
  89. 89.
    Meschia JF. Stroke genome-wide association studies: the large numbers imperative. Stroke. 2010;41(4):579–80.CrossRefGoogle Scholar
  90. 90.
    Lanktree MB, Dichgans M, Hegele RA. Advances in genomic analysis of stroke: what have we learned and where are we headed? Stroke. 2010;41(4):825–32.CrossRefGoogle Scholar
  91. 91.
    Anderson C, Biffi A, Rahman R, Ross O, Jagiella J, Kissela B, Cole J, Cortellini L, Rost N, Cheng Y, Greenberg S, de Bakker P, Brown R, Brott T, Mitchell B, Broderick J, Worrall B, Furie K, Kittner S, Woo D, Slowik A, Meschia J, Saxena R, Rosand J, On behalf of the International Stroke Genetics Consortium. Common mitochondrial sequence variants in ischemic stroke. Ann Neurol. 2011;69(3):471–80. doi: 10.1002/ana.22108. Epub 2010 Sep 13.CrossRefGoogle Scholar
  92. 92.
    Fornage M, Debette S, Bis JC, Schmidt H, Ikram MA, Dufouil C, et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann Neurol. 2011;69(6):928–39.CrossRefGoogle Scholar
  93. 93.
    Goldstein LB; A Primer on Stroke Prevention and Treatment: An overview based on AHA/ASA Guidelines; 978-1-4051-8651-3; 2009; Wiley-Blackwell.Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Stroke Service, Department of NeurologyMassachusetts General HospitalBostonUSA

Personalised recommendations