Skip to main content

Other Monogenetic Stroke Disorders

  • Chapter
  • First Online:
Book cover Stroke Genetics

Abstract

This chapter provides an overview of many of the single-gene causing disorders that cause stroke not covered by individual chapters. Emphasis is placed on those conditions with treatment implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.omim.org/

  2. 2.

    http://www.ncbi.nlm.nih.gov/omim

  3. 3.

    http://www.genetests.org/

References

  1. Homocystinuria (OMIM: 236200). http://www.omim.org/. Accessed 9 Aug 2011.

  2. U.S. National Center for Biotechnology Information (NCBI). http://www.ncbi.nlm.nih.gov/omim. vAccessed 9 Aug 2011.

  3. Gene test – gene clinics. http://www.genetests.org/. Accessed 9 Aug 2011.

  4. Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost. 2005;3:1646–54.

    Article  PubMed  CAS  Google Scholar 

  5. Abahji TN, Nill L, Ide N, et al. Acute hyperhomocysteinemia induces microvascular and macrovascular endothelial dysfunction. Arch Med Res. 2007;38:411–6.

    Article  PubMed  CAS  Google Scholar 

  6. Upchurch Jr GR, Welch GN, Fabian AJ, et al. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem. 1997;272:17012–7.

    Article  PubMed  CAS  Google Scholar 

  7. Dayal S, Wilson KM, Leo L, et al. Enhanced susceptibility to arterial thrombosis in a murine model of hyperhomocysteinemia. Blood. 2006;108:2237–43.

    Article  PubMed  CAS  Google Scholar 

  8. Kelly PJ, Furie KL, Kistler JP, et al. Stroke in young patients with hyperhomocysteinemia due to cystathionine β-synthase deficiency. Neurology. 2003;60:275–9.

    Article  PubMed  CAS  Google Scholar 

  9. Chauveheid MP, Lidove O, Papo T, Laissy JP. Adult-onset homocystinuria arteriopathy mimics fibromuscular dysplasia. Am J Med. 2008;121:e5–6. Accessed May 8, 2011.

    Article  PubMed  Google Scholar 

  10. Familial hyper-cholesterolemia – type II-a (OMIM: 143890). http://www.omim.org/. Accessed 15 Feb 2012.

  11. Familial HDL deficiency – type I (OMIM: 205400). http://www.omim.org/. Accessed 12 Mar 2012.

  12. Goldstein JL, Brown MS. The LDL receptor locus and the genetics of familial hypercholesterolemia. Annu Rev Genet. 1979;13:259–89.

    Article  PubMed  CAS  Google Scholar 

  13. Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992;1:445–66.

    Article  PubMed  CAS  Google Scholar 

  14. Garg A, Simha V. Update on dyslipidemia. J Clin Endocrinol Metab. 2007;92:1581–9.

    Article  PubMed  CAS  Google Scholar 

  15. CADASIL – cerebral autosomol dominant subcortical infarcts and leukoencephaly (OMIM: 125310). http://www.omim.org/. Accessed 18 Mar 2010.

  16. Reyes S, Viswanathan A, Godin O, Dufouil C, Benisty S, Hernandez K, et al. Apathy: a major symptom in CADASIL. Neurology. 2009;72:905–10.

    Article  PubMed  CAS  Google Scholar 

  17. Monet-Leprêtre M, Bardot B, Lemaire B, Domenga V, Godin O, Dichgans M, et al. Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain. 2009;132:1601–12.

    Article  PubMed  Google Scholar 

  18. Tikka S, Mykkänen K, Ruchoux MM, Bergholm R, Junna M, Pöyhönen M, et al. Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain. 2009;132:933–9.

    Article  PubMed  Google Scholar 

  19. Joutel A, Favrole P, Labauge P, Chabriat H, Lescoat C, Andreux F, et al. Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis. Lancet. 2001;358:2049–51.

    Article  PubMed  CAS  Google Scholar 

  20. Singhal S, Rich P, Markus HS. The spatial distribution of MR imaging abnormalities in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and their relationship to age and clinical features. AJNR Am J Neuroradiol. 2005;26:2481–7.

    PubMed  Google Scholar 

  21. Liem MK, Lesnik Oberstein SA, Haan J, van der Neut IL, Ferrari MD, van Buchem MA, et al. MRI correlates of cognitive decline in CADASIL: a 7-year follow-up study. Neurology. 2009;72:143–8.

    Article  PubMed  CAS  Google Scholar 

  22. CARASIL (OMIM: 600142). http://www.omim.org/. Accessed 10 Mar 2011.

  23. Arima K, Yanagawa S, Ito N, Ikesa S. Cerebral arterial pathology of CADASIL and CARASIL (Maeda syndrome). Neuropathology. 2003;23:327–34.

    Article  PubMed  Google Scholar 

  24. Yanagawa S, Ito N, Aruna K, Ikeda S. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Neurology. 2002;58:817–20.

    Article  PubMed  Google Scholar 

  25. Razvi SSM, Bone I. Single gene disorders causing ischaemic stroke. J Neurol. 2006;253:685–700.

    Article  PubMed  Google Scholar 

  26. Lanfranconi S, Markus H. COL4A1 mutations as a monogenetic cause of cerebral small vessel disease: a systematic review. Stroke. 2010;41:e513–8.

    Article  PubMed  Google Scholar 

  27. Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med. 2009;360:1729–39.

    Article  PubMed  CAS  Google Scholar 

  28. Mendioroz M, Fernández-Cadenas I, Del Río-Espinola A, Rovira A, Solé E, Fernández-Figueras MT, et al. A missense HTRA1 mutation expands CARASIL syndrome to the Caucasian population. Neurology. 2010;75:2033–5.

    Article  PubMed  CAS  Google Scholar 

  29. Fabry disease (OMIM 301500). http://www.omim.org/. Accessed 14 Mar 2011.

  30. Fellgiebel A, Müller MJ, Ginsberg L. CNS manifestations of Fabry’s disease. Lancet Neurol. 2006;5:791–5.

    Article  PubMed  Google Scholar 

  31. Sims K, Politei J, Banikazemi M, Lee P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: natural history data from the Fabry Registry. Stroke. 2009;40:788–94.

    Article  PubMed  Google Scholar 

  32. Mehta A, Beck M, Elliott P, Giugliani R, Linhart A, Sunder-Plassmann G, et al. Enzyme replacement therapy with agalsidase alfa in patients with Fabry’s disease: an analysis of registry data. Lancet. 2009;374:1986–96.

    Article  PubMed  CAS  Google Scholar 

  33. Rolfs A, Böttcher T, Zschiesche M, Morris P, Winchester B, Bauer P, et al. Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet. 2005;366:1794–6.

    Article  PubMed  Google Scholar 

  34. Wozniak MA, Kittner SJ, Tuhrim S, Cole JW, Stern B, Dobbins M, et al. Frequency of unrecognized Fabry disease among young European-American and African-American men with first ischemic stroke. Stroke. 2010;41:78–81.

    Article  PubMed  Google Scholar 

  35. Baptista MV, Ferreira S, Pinho-E-Melo T, Carvalho M, Cruz VT, Carmona C, et al. Mutations of the GLA gene in young patients with stroke: the PORTYSTROKE study – screening genetic conditions in Portuguese young stroke patients. Stroke. 2010;41:431–6.

    Article  PubMed  CAS  Google Scholar 

  36. Brouns R, Thijs V, Eyskens F, Van den Broeck M, Belachew S, Van Broeckhoven C, et al. Belgian Fabry study: prevalence of Fabry disease in a cohort of 1,000 young patients with cerebrovascular disease. Stroke. 2010;41:863–8.

    Article  PubMed  Google Scholar 

  37. Brain small vessel disease with hemorrhage – COL4A1 (OMIM 607595). http://www.omim.org/. Accessed 9 Aug 2011.

  38. Yamamoto Y, Craggs L, Baumann M, Kalimo H, Kalaria RN. Review: molecular genetics and pathology of hereditary small vessel diseases of the brain. Neuropathol Appl Neurobiol. 2001;37:94–113.

    Article  Google Scholar 

  39. Alamowitch S, Plaisier E, Favrole P, et al. Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology. 2009;73:1873–82.

    Article  PubMed  CAS  Google Scholar 

  40. TREX spectrum disorders (OMIM: 192315). http://www.omim.org/. Accessed 25 Jul 2011.

  41. Kavanaugh D, Spitzer D, Kothari P, et al. New roles for the major human 3′–5′ exonuclease TREX1 in human disease. Cell Cycle. 2008;7:1718–25.

    Article  Google Scholar 

  42. Jen J, Cohen AH, Yue Q, et al. Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS). Neurology. 1997;49:1322–30.

    Article  PubMed  CAS  Google Scholar 

  43. Richards A, van den Maagdenberg AM, Jen JC, et al. C-terminal truncations in human 3′–5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet. 2007;39:1068–70.

    Article  PubMed  CAS  Google Scholar 

  44. Sickle cell disease (OMIM: 603903). http://www.omim.org/. Accessed 4 Jan 2012.

  45. Adams RJ, McKie VC, Hsu L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339:5–11.

    Article  PubMed  CAS  Google Scholar 

  46. Ohene-Frempong K, Weiner SJ, Sleeper LA, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91:288–94.

    PubMed  CAS  Google Scholar 

  47. Nichols FT, Jones AM, Adams RJ. Stroke prevention in sickle cell disease (STOP) study guidelines for transcranial Doppler testing. J Neuroimaging. 2001;11:354–62.

    Article  PubMed  CAS  Google Scholar 

  48. Adams RJ. Lessons from the stroke prevention trial in sickle cell anemia (STOP) study. J Child Neurol. 2000;15:344–9.

    Article  PubMed  CAS  Google Scholar 

  49. Pegelow CH, Wang W, Granger S, et al. Silent infarcts in children with sickle cell anemia and abnormal cerebral artery velocity. Arch Neurol. 2001;58:2017–21.

    Article  PubMed  CAS  Google Scholar 

  50. Prengler M, Pavlakis SG, Prohovnik I, Adams RJ. Sickle cell disease: the neurological complications. Ann Neurol. 2002;51:543–52.

    Article  PubMed  CAS  Google Scholar 

  51. Steinberg MH, Barton F, Castro O, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA. 2003;289:1645–51.

    Article  PubMed  CAS  Google Scholar 

  52. Protein C deficiency (OMIM: 176860). http://www.omim.org/. Accessed 9 Aug 2011.

  53. Griffin JH, Evatt B, Zimmerman TS, et al. Deficiency of protein C in congenital thrombotic disease. J Clin Invest. 1981;68:1370–3.

    Article  PubMed  CAS  Google Scholar 

  54. Bertina RM, Broekmans AW, Krommenhoek-van Es C, van Wijngaarden A. The use of a functional and immunologic assay for plasma protein C in the study of the heterogeneity of congenital protein C deficiency. Thromb Haemost. 1984;51:1–5.

    PubMed  CAS  Google Scholar 

  55. Bertina RM, Broekmans AW, van der Linden IK, Mertens K. Protein C deficiency in a Dutch family with thrombotic disease. Thromb Haemost. 1982;48:1–5.

    PubMed  CAS  Google Scholar 

  56. Berdeaux DH, Abshire TC, Marlar RA. Dysfunctional protein C deficiency (type II): a report of 11 cases in 3 American families and review of the literature. Am J Clin Pathol. 1993;99:677–86.

    PubMed  CAS  Google Scholar 

  57. Protein S deficiency (OMIM: 176880, 612336). http://www.omim.org/. Accessed 1 Mar 2012.

  58. Comp PC, Nixon RR, Cooper MR, Esmon CT. Familial protein S deficiency is associated with recurrent thrombosis. J Clin Invest. 1984;74:2082–8.

    Article  PubMed  CAS  Google Scholar 

  59. Engesser L, Broekmans AW, Briet E, et al. Hereditary protein S deficiency: clinical manifestations. Ann Intern Med. 1987;106:677–82.

    PubMed  CAS  Google Scholar 

  60. Factor V Leiden mutation (OMIM: 227400). http://www.omim.org/. Accessed 3 Jun 2009.

  61. de Paula Sabino A, Ribeiro DD, Carvalho MG, et al. Factor V Leiden and increased risk for arterial thrombotic disease in young Brazilian patients. Blood Coagul Fibrinolysis. 2006;17:271–5.

    Article  PubMed  Google Scholar 

  62. Margaglione M, D’Andrea G, Giuliani N, et al. Inherited prothrombotic conditions and premature ischemic stroke: Sex difference in the association with factor V Leiden. Arterioscler Thromb Vasc Biol. 1999;19:1751–6.

    Article  PubMed  CAS  Google Scholar 

  63. Hamedani AG, Cole JW, Mitchell BD, Kittner SJ. Meta-analysis of factor V Leiden and ischemic stroke in young adults: the importance of case ascertainment. Stroke. 2010;41:1599–603.

    Article  PubMed  Google Scholar 

  64. Longstreth Jr WT, Rosendaal FR, Siscovick DS, et al. Risk of stroke in young women and two prothrombotic mutations: factor V Leiden and prothrombin gene variant (G20210A). Stroke. 1998;29:577–80.

    Article  PubMed  Google Scholar 

  65. Nabavi DG, Junker R, Wolff E, et al. Prevalence of factor V Leiden mutation in young adults with cerebral ischaemia: a case-control study on 225 patients. J Neurol. 1998;245:653–8.

    Article  PubMed  CAS  Google Scholar 

  66. Grody WW, Griffin JH, Taylor AK, et al. American College of Medical Genetics consensus statement on factor V Leiden mutation testing. Genet Med. 2001;3:139–48.

    Article  PubMed  CAS  Google Scholar 

  67. MELAS – Mitochondrial encephalopathy lactic acidosis and stroke (OMIM:540000). http://www.omim.org/. Accessed 2 Aug 2011.

  68. Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol. 1984;16:481–8.

    Article  PubMed  CAS  Google Scholar 

  69. Hirano M, Pavlakis SG. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS): current concepts. J Child Neurol. 1994;9:4–13.

    Article  PubMed  CAS  Google Scholar 

  70. Ko CH, Lam CW, Tse PW, Kong CK, Chan AK, Wong LJ. De novo mutation in the mitochondrial tRNALeu(UUR) gene (A3243G) with rapid segregation resulting in MELAS in the offspring. J Paediatr Child Health. 2001;37:87–90.

    Article  PubMed  CAS  Google Scholar 

  71. Pang CY, Huang CC, Yen MY, et al. Molecular epidemiologic study of mitochondrial DNA mutations in patients with mitochondrial diseases in Taiwan. J Formos Med Assoc. 1999;98:326–34.

    PubMed  CAS  Google Scholar 

  72. Nishino I, Komatsu M, Kodama S, Horai S, Nonaka I, Goto Y. The 3260 mutation in mitochondrial DNA can cause mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS). Muscle Nerve. 1996;19:1603–4.

    Article  PubMed  CAS  Google Scholar 

  73. Sato W, Hayasaka K, Shoji Y, et al. A mitochondrial tRNA(Leu)(UUR) mutation at 3,256 associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochem Mol Biol Int. 1994;33:1055–61.

    PubMed  CAS  Google Scholar 

  74. Peterson PL. The treatment of mitochondrial myopathies and encephalomyopathies. Biochim Biophys Acta. 1995;1271:275–80.

    Article  PubMed  CAS  Google Scholar 

  75. Lam CW, Lau CH, Williams JC, Chan YW, Wong LJ. Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) triggered by valproate therapy. Eur J Pediatr. 1997;156:562–4.

    Article  PubMed  CAS  Google Scholar 

  76. DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003;348:2656–68.

    Article  PubMed  CAS  Google Scholar 

  77. Ehlers-Danlos syndrome – type IV (OMIM: 130050). http://www.omim.org/. Accessed 30 Jul 2012.

  78. Superti-Furga A, Gugler E, Gitzelmann R, Steinmann B. Ehlers-danlos syndrome type IV: a multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen. J Biol Chem. 1988;263:6226–32.

    PubMed  CAS  Google Scholar 

  79. Germain DP, Herrera-Guzman Y. Vascular ehlers-danlos syndrome. Ann Genet. 2004;47:1–9.

    Article  PubMed  Google Scholar 

  80. Marfan syndrome (OMIM: 154700). http://www.omim.org/, Accessed 23 Jun 2011.

  81. Sponseller PD, Hobbs W, Riley LH, Pyeritz RE. The thoracolumbar spine in Marfan syndrome. J Bone Joint Surg Am. 1995;77:867–76.

    PubMed  CAS  Google Scholar 

  82. Chan YC, Ting CW, Ho P, Poon JT, Cheung GC, Cheng SW. Ten-year epidemiological review of in-hospital patients with Marfan syndrome. Ann Vasc Surg. 2008;22:608–12.

    Article  PubMed  CAS  Google Scholar 

  83. Ballabio E, Bersano A, Bresolin N, Candelise L. Monogenic vessel diseases related to ischemic stroke: a clinical approach. J Cereb Blood Flow Metab. 2007;27:1649–62.

    Article  PubMed  CAS  Google Scholar 

  84. Pyeritz RE. The Marfan syndrome. Annu Rev Med. 2000;51:481–510.

    Article  PubMed  CAS  Google Scholar 

  85. Schievink WI, Michels VV, Piepgras DG. Neurovascular manifestations of heritable connective tissue disorders. Stroke. 1994;25:889–903.

    Article  PubMed  CAS  Google Scholar 

  86. Wityk R, Zanferrari C, Oppenheimer S. Neurovascular complications of Marfan syndrome: a retrospective, hospital-based study. Stroke. 2002;33:680–4.

    Article  PubMed  Google Scholar 

  87. Silverman IE, Berman DM, Dike GL, et al. Vertebrobasilar dolichoectasia associated with Marfan syndrome. J Stroke Cerebrovasc Dis. 2000;9:196–8.

    Article  Google Scholar 

  88. Fibromuscular dysplasia (OMIM: 135580). http://www.omim.org/. Accessed 8 Sep 2011.

  89. Mettinger KL, Ericson K. Fibromuscular dysplasia and the brain. I. Observations on angiographic, clinical and genetic characteristics. Stroke. 1982;13:46–52.

    Article  PubMed  CAS  Google Scholar 

  90. Plouin PF, Perdu J, LaBatide-Alanore A, et al. Fibromuscular dysplasia. Orphanet J Rare Dis. 2007;2:28.

    Article  PubMed  Google Scholar 

  91. Meyers DS, Grim CE, Keitzer WF. Fibromuscular dysplasia of the renal artery with medial dissection. A case simulating polyarteritis nodosa. Am J Med. 1974;56:412–6.

    Article  PubMed  CAS  Google Scholar 

  92. Janzen J, Vuong PN, Rothenberger-Janzen K. Takayasu’s arteritis and fibromuscular dysplasia as causes of acquired atypical coarctation of the aorta: retrospective analysis of seven cases. Heart Vessels. 1999;14:277–82.

    Article  PubMed  CAS  Google Scholar 

  93. Siegert CE, Macfarlane JD, Hollander AM, van Kemenade F. Systemic fibromuscular dysplasia masquerading as polyarteritis nodosa. Nephrol Dial Transplant. 1996;11:1356–8.

    Article  PubMed  CAS  Google Scholar 

  94. Sperati CJ, Aggarwal N, Arepally A, Atta MG. Fibromuscular dysplasia. Kidney Int. 2009; 75:333–6.

    Article  PubMed  Google Scholar 

  95. Niizuma S, Nakahama H, Inenaga T, et al. Asymptomatic renal infarction, due to fibromuscular dysplasia in a young woman with 11 years of follow-up. Clin Exp Nephrol. 2005;9:170–3.

    Article  PubMed  Google Scholar 

  96. Connor A, Mathieson P. A string of beads. Am J Med. 2008;121:580–2.

    Article  PubMed  Google Scholar 

  97. Olin JW. Recognizing and managing fibromuscular dysplasia. Cleve Clin J Med. 2007;74:273–82.

    Article  PubMed  Google Scholar 

  98. Begelman SM, Olin JW. Fibromuscular dysplasia. Curr Opin Rheumatol. 2000;12:41–7.

    Article  PubMed  CAS  Google Scholar 

  99. Pseudoxanthoma elasticum – AD form (OMIM: 177850), AR form (OMIM: 264800). http://www.omim.org/. Accessed 29 Jun 2010, 29 Feb 2012.

  100. Struk B, Neldner KH, Rao VS, St Jean P, Lindpaintner K. Mapping of both autosomal recessive and dominant variants of pseudoxanthoma elasticum to chromosome 16p13.1. Hum Mol Genet. 1997;6:1823–8.

    Article  PubMed  CAS  Google Scholar 

  101. Gheduzzi D, Guidetti R, Anzivino C, et al. ABCC6 mutations in Italian families affected by pseudoxanthoma elasticum (PXE). Hum Mutat. 2004;24:438–9.

    Article  PubMed  Google Scholar 

  102. Sherer DW, Bercovitch L, Lebwohl M. Pseudoxanthoma elasticum: significance of limited phenotypic expression in parents of affected offspring. J Am Acad Dermatol. 2001;44:534–7.

    Article  PubMed  CAS  Google Scholar 

  103. Chassaing N, Martin L, Calvas P, et al. Pseudoxanthoma elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 mutations. J Med Genet. 2005;42:881–92.

    Article  PubMed  CAS  Google Scholar 

  104. Hu X, Plomp AS, van Soest S, et al. Pseudoxanthoma elasticum: a clinical, histopathological, and molecular update. Surv Ophthalmol. 2003;48:424–38.

    Article  PubMed  Google Scholar 

  105. Laube S, Moss C. Pseudoxanthoma elasticum. Arch Dis Child. 2005;90:754–6.

    Article  PubMed  CAS  Google Scholar 

Recommended Review Articles

  1. Ballabio E, Bersano A, Bresolin N, Candelise L. Monogenic vessel diseases related to ischemic stroke: a clinical approach. J Cereb Blood Flow Metab. 2007;27:1649–62.

    Article  PubMed  CAS  Google Scholar 

  2. Yananoto Y, Craggs L, Baumann M, Kalimo H, Kalaria R. Review: molecular genetics and pathology of hereditary small vessel diseases of the brain. Neuropathol Appl Neurobiol. 2011;37:94–113.

    Article  Google Scholar 

  3. Razvi SS, Bone I. Single gene disorders causing ischaemic stroke. J Neurol. 2006;253:685–700.

    Article  PubMed  Google Scholar 

  4. Meschia J, Worrall B, Rich S. Genetic susceptibility to ischemic stroke. Nat Rev Neurol. 2011;317:369–78.

    Article  Google Scholar 

  5. Testai FD, Gorelick PB. Inherited metabolic disorders and stroke part 1: Fabry disease and mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Arch Neurol. 2010;67:19–24.

    Article  PubMed  Google Scholar 

  6. Testai FD, Gorelick PB. Inherited metabolic disorders and stroke part 2: homocystinuria, organic acidurias, and urea cycle disorders. Arch Neurol. 2010;67:148–53.

    Article  PubMed  Google Scholar 

  7. The genetic information nondiscrimination act (GINA). http://www.nchpeg.org/index.php?option=com_content&view=article&id=97&Itemid=120. Accessed 5 Aug 2011.

  8. Genetic information nondiscrimination Act of 2008. http://www.genome.gov/10002328. Accessed 5 Aug 2011.

  9. Chen B, Gagnon M, Shahangian S, et al. Good laboratory practices for molecular genetic testing for heritable diseases and conditions. CDC MMWR. 2009;58:1–29. http://wwwn.cdc.gov/dls/moleculartesting/. Accessed 30 June 2011.

    Google Scholar 

Download references

Acknowledgement and Disclaimer

Dr. Cole’s effort on this project was supported by the Department of Veterans Administration (VA), Department of Neurology and Medical Research Service, and the National Institutes of Health/National Institute of Neurological Disorders and Stroke (Grant U01-NS069208–01); its contents are the responsibility of the authors and do not necessarily reflect the official views of the VA or the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Cole M.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Cole, J.W., Gutwald, J. (2013). Other Monogenetic Stroke Disorders. In: Sharma, P., Meschia, J. (eds) Stroke Genetics. Springer, London. https://doi.org/10.1007/978-0-85729-209-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-209-4_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-208-7

  • Online ISBN: 978-0-85729-209-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics