Other Monogenetic Stroke Disorders



This chapter provides an overview of many of the single-gene causing disorders that cause stroke not covered by individual chapters. Emphasis is placed on those conditions with treatment implications.


Genetic Testing Sickle Cell Disease Fabry Disease Cerebral Venous Thrombosis Genetic Discrimination 


Acknowledgement and Disclaimer

Dr. Cole’s effort on this project was supported by the Department of Veterans Administration (VA), Department of Neurology and Medical Research Service, and the National Institutes of Health/National Institute of Neurological Disorders and Stroke (Grant U01-NS069208–01); its contents are the responsibility of the authors and do not necessarily reflect the official views of the VA or the NIH.


  1. 1.
    Homocystinuria (OMIM: 236200). http://www.omim.org/. Accessed 9 Aug 2011.
  2. 2.
    U.S. National Center for Biotechnology Information (NCBI). http://www.ncbi.nlm.nih.gov/omim. vAccessed 9 Aug 2011.
  3. 3.
    Gene test – gene clinics. http://www.genetests.org/. Accessed 9 Aug 2011.
  4. 4.
    Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost. 2005;3:1646–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Abahji TN, Nill L, Ide N, et al. Acute hyperhomocysteinemia induces microvascular and macrovascular endothelial dysfunction. Arch Med Res. 2007;38:411–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Upchurch Jr GR, Welch GN, Fabian AJ, et al. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem. 1997;272:17012–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Dayal S, Wilson KM, Leo L, et al. Enhanced susceptibility to arterial thrombosis in a murine model of hyperhomocysteinemia. Blood. 2006;108:2237–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Kelly PJ, Furie KL, Kistler JP, et al. Stroke in young patients with hyperhomocysteinemia due to cystathionine β-synthase deficiency. Neurology. 2003;60:275–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Chauveheid MP, Lidove O, Papo T, Laissy JP. Adult-onset homocystinuria arteriopathy mimics fibromuscular dysplasia. Am J Med. 2008;121:e5–6. Accessed May 8, 2011.PubMedCrossRefGoogle Scholar
  10. 10.
    Familial hyper-cholesterolemia – type II-a (OMIM: 143890). http://www.omim.org/. Accessed 15 Feb 2012.
  11. 11.
    Familial HDL deficiency – type I (OMIM: 205400). http://www.omim.org/. Accessed 12 Mar 2012.
  12. 12.
    Goldstein JL, Brown MS. The LDL receptor locus and the genetics of familial hypercholesterolemia. Annu Rev Genet. 1979;13:259–89.PubMedCrossRefGoogle Scholar
  13. 13.
    Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992;1:445–66.PubMedCrossRefGoogle Scholar
  14. 14.
    Garg A, Simha V. Update on dyslipidemia. J Clin Endocrinol Metab. 2007;92:1581–9.PubMedCrossRefGoogle Scholar
  15. 15.
    CADASIL – cerebral autosomol dominant subcortical infarcts and leukoencephaly (OMIM: 125310). http://www.omim.org/. Accessed 18 Mar 2010.
  16. 16.
    Reyes S, Viswanathan A, Godin O, Dufouil C, Benisty S, Hernandez K, et al. Apathy: a major symptom in CADASIL. Neurology. 2009;72:905–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Monet-Leprêtre M, Bardot B, Lemaire B, Domenga V, Godin O, Dichgans M, et al. Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain. 2009;132:1601–12.PubMedCrossRefGoogle Scholar
  18. 18.
    Tikka S, Mykkänen K, Ruchoux MM, Bergholm R, Junna M, Pöyhönen M, et al. Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain. 2009;132:933–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Joutel A, Favrole P, Labauge P, Chabriat H, Lescoat C, Andreux F, et al. Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis. Lancet. 2001;358:2049–51.PubMedCrossRefGoogle Scholar
  20. 20.
    Singhal S, Rich P, Markus HS. The spatial distribution of MR imaging abnormalities in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and their relationship to age and clinical features. AJNR Am J Neuroradiol. 2005;26:2481–7.PubMedGoogle Scholar
  21. 21.
    Liem MK, Lesnik Oberstein SA, Haan J, van der Neut IL, Ferrari MD, van Buchem MA, et al. MRI correlates of cognitive decline in CADASIL: a 7-year follow-up study. Neurology. 2009;72:143–8.PubMedCrossRefGoogle Scholar
  22. 22.
    CARASIL (OMIM: 600142). http://www.omim.org/. Accessed 10 Mar 2011.
  23. 23.
    Arima K, Yanagawa S, Ito N, Ikesa S. Cerebral arterial pathology of CADASIL and CARASIL (Maeda syndrome). Neuropathology. 2003;23:327–34.PubMedCrossRefGoogle Scholar
  24. 24.
    Yanagawa S, Ito N, Aruna K, Ikeda S. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Neurology. 2002;58:817–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Razvi SSM, Bone I. Single gene disorders causing ischaemic stroke. J Neurol. 2006;253:685–700.PubMedCrossRefGoogle Scholar
  26. 26.
    Lanfranconi S, Markus H. COL4A1 mutations as a monogenetic cause of cerebral small vessel disease: a systematic review. Stroke. 2010;41:e513–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med. 2009;360:1729–39.PubMedCrossRefGoogle Scholar
  28. 28.
    Mendioroz M, Fernández-Cadenas I, Del Río-Espinola A, Rovira A, Solé E, Fernández-Figueras MT, et al. A missense HTRA1 mutation expands CARASIL syndrome to the Caucasian population. Neurology. 2010;75:2033–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Fabry disease (OMIM 301500). http://www.omim.org/. Accessed 14 Mar 2011.
  30. 30.
    Fellgiebel A, Müller MJ, Ginsberg L. CNS manifestations of Fabry’s disease. Lancet Neurol. 2006;5:791–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Sims K, Politei J, Banikazemi M, Lee P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: natural history data from the Fabry Registry. Stroke. 2009;40:788–94.PubMedCrossRefGoogle Scholar
  32. 32.
    Mehta A, Beck M, Elliott P, Giugliani R, Linhart A, Sunder-Plassmann G, et al. Enzyme replacement therapy with agalsidase alfa in patients with Fabry’s disease: an analysis of registry data. Lancet. 2009;374:1986–96.PubMedCrossRefGoogle Scholar
  33. 33.
    Rolfs A, Böttcher T, Zschiesche M, Morris P, Winchester B, Bauer P, et al. Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet. 2005;366:1794–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Wozniak MA, Kittner SJ, Tuhrim S, Cole JW, Stern B, Dobbins M, et al. Frequency of unrecognized Fabry disease among young European-American and African-American men with first ischemic stroke. Stroke. 2010;41:78–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Baptista MV, Ferreira S, Pinho-E-Melo T, Carvalho M, Cruz VT, Carmona C, et al. Mutations of the GLA gene in young patients with stroke: the PORTYSTROKE study – screening genetic conditions in Portuguese young stroke patients. Stroke. 2010;41:431–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Brouns R, Thijs V, Eyskens F, Van den Broeck M, Belachew S, Van Broeckhoven C, et al. Belgian Fabry study: prevalence of Fabry disease in a cohort of 1,000 young patients with cerebrovascular disease. Stroke. 2010;41:863–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Brain small vessel disease with hemorrhage – COL4A1 (OMIM 607595). http://www.omim.org/. Accessed 9 Aug 2011.
  38. 38.
    Yamamoto Y, Craggs L, Baumann M, Kalimo H, Kalaria RN. Review: molecular genetics and pathology of hereditary small vessel diseases of the brain. Neuropathol Appl Neurobiol. 2001;37:94–113.CrossRefGoogle Scholar
  39. 39.
    Alamowitch S, Plaisier E, Favrole P, et al. Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology. 2009;73:1873–82.PubMedCrossRefGoogle Scholar
  40. 40.
    TREX spectrum disorders (OMIM: 192315). http://www.omim.org/. Accessed 25 Jul 2011.
  41. 41.
    Kavanaugh D, Spitzer D, Kothari P, et al. New roles for the major human 3′–5′ exonuclease TREX1 in human disease. Cell Cycle. 2008;7:1718–25.CrossRefGoogle Scholar
  42. 42.
    Jen J, Cohen AH, Yue Q, et al. Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS). Neurology. 1997;49:1322–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Richards A, van den Maagdenberg AM, Jen JC, et al. C-terminal truncations in human 3′–5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet. 2007;39:1068–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Sickle cell disease (OMIM: 603903). http://www.omim.org/. Accessed 4 Jan 2012.
  45. 45.
    Adams RJ, McKie VC, Hsu L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339:5–11.PubMedCrossRefGoogle Scholar
  46. 46.
    Ohene-Frempong K, Weiner SJ, Sleeper LA, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91:288–94.PubMedGoogle Scholar
  47. 47.
    Nichols FT, Jones AM, Adams RJ. Stroke prevention in sickle cell disease (STOP) study guidelines for transcranial Doppler testing. J Neuroimaging. 2001;11:354–62.PubMedCrossRefGoogle Scholar
  48. 48.
    Adams RJ. Lessons from the stroke prevention trial in sickle cell anemia (STOP) study. J Child Neurol. 2000;15:344–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Pegelow CH, Wang W, Granger S, et al. Silent infarcts in children with sickle cell anemia and abnormal cerebral artery velocity. Arch Neurol. 2001;58:2017–21.PubMedCrossRefGoogle Scholar
  50. 50.
    Prengler M, Pavlakis SG, Prohovnik I, Adams RJ. Sickle cell disease: the neurological complications. Ann Neurol. 2002;51:543–52.PubMedCrossRefGoogle Scholar
  51. 51.
    Steinberg MH, Barton F, Castro O, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA. 2003;289:1645–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Protein C deficiency (OMIM: 176860). http://www.omim.org/. Accessed 9 Aug 2011.
  53. 53.
    Griffin JH, Evatt B, Zimmerman TS, et al. Deficiency of protein C in congenital thrombotic disease. J Clin Invest. 1981;68:1370–3.PubMedCrossRefGoogle Scholar
  54. 54.
    Bertina RM, Broekmans AW, Krommenhoek-van Es C, van Wijngaarden A. The use of a functional and immunologic assay for plasma protein C in the study of the heterogeneity of congenital protein C deficiency. Thromb Haemost. 1984;51:1–5.PubMedGoogle Scholar
  55. 55.
    Bertina RM, Broekmans AW, van der Linden IK, Mertens K. Protein C deficiency in a Dutch family with thrombotic disease. Thromb Haemost. 1982;48:1–5.PubMedGoogle Scholar
  56. 56.
    Berdeaux DH, Abshire TC, Marlar RA. Dysfunctional protein C deficiency (type II): a report of 11 cases in 3 American families and review of the literature. Am J Clin Pathol. 1993;99:677–86.PubMedGoogle Scholar
  57. 57.
    Protein S deficiency (OMIM: 176880, 612336). http://www.omim.org/. Accessed 1 Mar 2012.
  58. 58.
    Comp PC, Nixon RR, Cooper MR, Esmon CT. Familial protein S deficiency is associated with recurrent thrombosis. J Clin Invest. 1984;74:2082–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Engesser L, Broekmans AW, Briet E, et al. Hereditary protein S deficiency: clinical manifestations. Ann Intern Med. 1987;106:677–82.PubMedGoogle Scholar
  60. 60.
    Factor V Leiden mutation (OMIM: 227400). http://www.omim.org/. Accessed 3 Jun 2009.
  61. 61.
    de Paula Sabino A, Ribeiro DD, Carvalho MG, et al. Factor V Leiden and increased risk for arterial thrombotic disease in young Brazilian patients. Blood Coagul Fibrinolysis. 2006;17:271–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Margaglione M, D’Andrea G, Giuliani N, et al. Inherited prothrombotic conditions and premature ischemic stroke: Sex difference in the association with factor V Leiden. Arterioscler Thromb Vasc Biol. 1999;19:1751–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Hamedani AG, Cole JW, Mitchell BD, Kittner SJ. Meta-analysis of factor V Leiden and ischemic stroke in young adults: the importance of case ascertainment. Stroke. 2010;41:1599–603.PubMedCrossRefGoogle Scholar
  64. 64.
    Longstreth Jr WT, Rosendaal FR, Siscovick DS, et al. Risk of stroke in young women and two prothrombotic mutations: factor V Leiden and prothrombin gene variant (G20210A). Stroke. 1998;29:577–80.PubMedCrossRefGoogle Scholar
  65. 65.
    Nabavi DG, Junker R, Wolff E, et al. Prevalence of factor V Leiden mutation in young adults with cerebral ischaemia: a case-control study on 225 patients. J Neurol. 1998;245:653–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Grody WW, Griffin JH, Taylor AK, et al. American College of Medical Genetics consensus statement on factor V Leiden mutation testing. Genet Med. 2001;3:139–48.PubMedCrossRefGoogle Scholar
  67. 67.
    MELAS – Mitochondrial encephalopathy lactic acidosis and stroke (OMIM:540000). http://www.omim.org/. Accessed 2 Aug 2011.
  68. 68.
    Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol. 1984;16:481–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Hirano M, Pavlakis SG. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS): current concepts. J Child Neurol. 1994;9:4–13.PubMedCrossRefGoogle Scholar
  70. 70.
    Ko CH, Lam CW, Tse PW, Kong CK, Chan AK, Wong LJ. De novo mutation in the mitochondrial tRNALeu(UUR) gene (A3243G) with rapid segregation resulting in MELAS in the offspring. J Paediatr Child Health. 2001;37:87–90.PubMedCrossRefGoogle Scholar
  71. 71.
    Pang CY, Huang CC, Yen MY, et al. Molecular epidemiologic study of mitochondrial DNA mutations in patients with mitochondrial diseases in Taiwan. J Formos Med Assoc. 1999;98:326–34.PubMedGoogle Scholar
  72. 72.
    Nishino I, Komatsu M, Kodama S, Horai S, Nonaka I, Goto Y. The 3260 mutation in mitochondrial DNA can cause mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS). Muscle Nerve. 1996;19:1603–4.PubMedCrossRefGoogle Scholar
  73. 73.
    Sato W, Hayasaka K, Shoji Y, et al. A mitochondrial tRNA(Leu)(UUR) mutation at 3,256 associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochem Mol Biol Int. 1994;33:1055–61.PubMedGoogle Scholar
  74. 74.
    Peterson PL. The treatment of mitochondrial myopathies and encephalomyopathies. Biochim Biophys Acta. 1995;1271:275–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Lam CW, Lau CH, Williams JC, Chan YW, Wong LJ. Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) triggered by valproate therapy. Eur J Pediatr. 1997;156:562–4.PubMedCrossRefGoogle Scholar
  76. 76.
    DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003;348:2656–68.PubMedCrossRefGoogle Scholar
  77. 77.
    Ehlers-Danlos syndrome – type IV (OMIM: 130050). http://www.omim.org/. Accessed 30 Jul 2012.
  78. 78.
    Superti-Furga A, Gugler E, Gitzelmann R, Steinmann B. Ehlers-danlos syndrome type IV: a multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen. J Biol Chem. 1988;263:6226–32.PubMedGoogle Scholar
  79. 79.
    Germain DP, Herrera-Guzman Y. Vascular ehlers-danlos syndrome. Ann Genet. 2004;47:1–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Marfan syndrome (OMIM: 154700). http://www.omim.org/, Accessed 23 Jun 2011.
  81. 81.
    Sponseller PD, Hobbs W, Riley LH, Pyeritz RE. The thoracolumbar spine in Marfan syndrome. J Bone Joint Surg Am. 1995;77:867–76.PubMedGoogle Scholar
  82. 82.
    Chan YC, Ting CW, Ho P, Poon JT, Cheung GC, Cheng SW. Ten-year epidemiological review of in-hospital patients with Marfan syndrome. Ann Vasc Surg. 2008;22:608–12.PubMedCrossRefGoogle Scholar
  83. 83.
    Ballabio E, Bersano A, Bresolin N, Candelise L. Monogenic vessel diseases related to ischemic stroke: a clinical approach. J Cereb Blood Flow Metab. 2007;27:1649–62.PubMedCrossRefGoogle Scholar
  84. 84.
    Pyeritz RE. The Marfan syndrome. Annu Rev Med. 2000;51:481–510.PubMedCrossRefGoogle Scholar
  85. 85.
    Schievink WI, Michels VV, Piepgras DG. Neurovascular manifestations of heritable connective tissue disorders. Stroke. 1994;25:889–903.PubMedCrossRefGoogle Scholar
  86. 86.
    Wityk R, Zanferrari C, Oppenheimer S. Neurovascular complications of Marfan syndrome: a retrospective, hospital-based study. Stroke. 2002;33:680–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Silverman IE, Berman DM, Dike GL, et al. Vertebrobasilar dolichoectasia associated with Marfan syndrome. J Stroke Cerebrovasc Dis. 2000;9:196–8.CrossRefGoogle Scholar
  88. 88.
    Fibromuscular dysplasia (OMIM: 135580). http://www.omim.org/. Accessed 8 Sep 2011.
  89. 89.
    Mettinger KL, Ericson K. Fibromuscular dysplasia and the brain. I. Observations on angiographic, clinical and genetic characteristics. Stroke. 1982;13:46–52.PubMedCrossRefGoogle Scholar
  90. 90.
    Plouin PF, Perdu J, LaBatide-Alanore A, et al. Fibromuscular dysplasia. Orphanet J Rare Dis. 2007;2:28.PubMedCrossRefGoogle Scholar
  91. 91.
    Meyers DS, Grim CE, Keitzer WF. Fibromuscular dysplasia of the renal artery with medial dissection. A case simulating polyarteritis nodosa. Am J Med. 1974;56:412–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Janzen J, Vuong PN, Rothenberger-Janzen K. Takayasu’s arteritis and fibromuscular dysplasia as causes of acquired atypical coarctation of the aorta: retrospective analysis of seven cases. Heart Vessels. 1999;14:277–82.PubMedCrossRefGoogle Scholar
  93. 93.
    Siegert CE, Macfarlane JD, Hollander AM, van Kemenade F. Systemic fibromuscular dysplasia masquerading as polyarteritis nodosa. Nephrol Dial Transplant. 1996;11:1356–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Sperati CJ, Aggarwal N, Arepally A, Atta MG. Fibromuscular dysplasia. Kidney Int. 2009; 75:333–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Niizuma S, Nakahama H, Inenaga T, et al. Asymptomatic renal infarction, due to fibromuscular dysplasia in a young woman with 11 years of follow-up. Clin Exp Nephrol. 2005;9:170–3.PubMedCrossRefGoogle Scholar
  96. 96.
    Connor A, Mathieson P. A string of beads. Am J Med. 2008;121:580–2.PubMedCrossRefGoogle Scholar
  97. 97.
    Olin JW. Recognizing and managing fibromuscular dysplasia. Cleve Clin J Med. 2007;74:273–82.PubMedCrossRefGoogle Scholar
  98. 98.
    Begelman SM, Olin JW. Fibromuscular dysplasia. Curr Opin Rheumatol. 2000;12:41–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Pseudoxanthoma elasticum – AD form (OMIM: 177850), AR form (OMIM: 264800). http://www.omim.org/. Accessed 29 Jun 2010, 29 Feb 2012.
  100. 100.
    Struk B, Neldner KH, Rao VS, St Jean P, Lindpaintner K. Mapping of both autosomal recessive and dominant variants of pseudoxanthoma elasticum to chromosome 16p13.1. Hum Mol Genet. 1997;6:1823–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Gheduzzi D, Guidetti R, Anzivino C, et al. ABCC6 mutations in Italian families affected by pseudoxanthoma elasticum (PXE). Hum Mutat. 2004;24:438–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Sherer DW, Bercovitch L, Lebwohl M. Pseudoxanthoma elasticum: significance of limited phenotypic expression in parents of affected offspring. J Am Acad Dermatol. 2001;44:534–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Chassaing N, Martin L, Calvas P, et al. Pseudoxanthoma elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 mutations. J Med Genet. 2005;42:881–92.PubMedCrossRefGoogle Scholar
  104. 104.
    Hu X, Plomp AS, van Soest S, et al. Pseudoxanthoma elasticum: a clinical, histopathological, and molecular update. Surv Ophthalmol. 2003;48:424–38.PubMedCrossRefGoogle Scholar
  105. 105.
    Laube S, Moss C. Pseudoxanthoma elasticum. Arch Dis Child. 2005;90:754–6.PubMedCrossRefGoogle Scholar

Recommended Review Articles

  1. 106.
    Ballabio E, Bersano A, Bresolin N, Candelise L. Monogenic vessel diseases related to ischemic stroke: a clinical approach. J Cereb Blood Flow Metab. 2007;27:1649–62.PubMedCrossRefGoogle Scholar
  2. 107.
    Yananoto Y, Craggs L, Baumann M, Kalimo H, Kalaria R. Review: molecular genetics and pathology of hereditary small vessel diseases of the brain. Neuropathol Appl Neurobiol. 2011;37:94–113.CrossRefGoogle Scholar
  3. 108.
    Razvi SS, Bone I. Single gene disorders causing ischaemic stroke. J Neurol. 2006;253:685–700.PubMedCrossRefGoogle Scholar
  4. 109.
    Meschia J, Worrall B, Rich S. Genetic susceptibility to ischemic stroke. Nat Rev Neurol. 2011;317:369–78.CrossRefGoogle Scholar
  5. 110.
    Testai FD, Gorelick PB. Inherited metabolic disorders and stroke part 1: Fabry disease and mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Arch Neurol. 2010;67:19–24.PubMedCrossRefGoogle Scholar
  6. 111.
    Testai FD, Gorelick PB. Inherited metabolic disorders and stroke part 2: homocystinuria, organic acidurias, and urea cycle disorders. Arch Neurol. 2010;67:148–53.PubMedCrossRefGoogle Scholar
  7. 112.
    The genetic information nondiscrimination act (GINA). http://www.nchpeg.org/index.php?option=com_content&view=article&id=97&Itemid=120. Accessed 5 Aug 2011.
  8. 113.
    Genetic information nondiscrimination Act of 2008. http://www.genome.gov/10002328. Accessed 5 Aug 2011.
  9. 114.
    Chen B, Gagnon M, Shahangian S, et al. Good laboratory practices for molecular genetic testing for heritable diseases and conditions. CDC MMWR. 2009;58:1–29. http://wwwn.cdc.gov/dls/moleculartesting/. Accessed 30 June 2011.Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Neurology, Baltimore VA Medical CenterUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Department of NeurologyUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations