Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 1405 Accesses

Abstract

In this chapter, the problem of the thermal stability of batch reactors in the presence of highly exothermic reactions is addressed. The reactor dynamics is investigated under adiabatic and isoperibolic conditions, and runaway boundaries are determined in terms of the dimensionless groups appearing in the mathematical model. Classical runaway criteria based on the geometry of the temperature profile and on the parametric sensitivity of the system are presented and discussed. Moreover, the operational limits arising from the maximum allowable temperature in the reactor are also highlighted. The chapter is then closed by a case study aiming at the determination of runaway boundaries for the phenol–formaldehyde reaction introduced in the previous chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

B :

dimensionless number defined in (4.36)

c :

mass heat capacity [J kg−1 K−1]

\(\mathcal{C}\) :

dimensionless concentration

C A :

concentration of reactant A [mol m−3]

E a :

activation energy [J mol−1]

h :

incremental step

ΔH R :

molar enthalpy change of reaction [J  mol−1]

k 0 :

preexponential factor [s−1]

q E :

dimensionless rate of heat exchange

q R :

dimensionless rate of heat production by reaction

\(\mathcal{R}\) :

universal gas constant [J mol−1 K−1]

s :

normalized objective sensitivity

S :

heat transfer area [m2]

Se :

dimensionless Semenov number

t :

time [s]

t E :

characteristic time of heat exchange [s]

t R :

characteristic reaction time [s]

T :

temperature [K]

\(\mathcal{T}\) :

dimensionless temperature

U :

overall heat transfer coefficient [J m−2 K−1 s−1]

V :

volume [m3]

θ :

generic model parameter

Λ :

dimensionless group defined in (4.7)

ρ :

density [kg m−3]

τ :

dimensionless time

τ b :

dimensionless batch time

τ I :

dimensionless induction time

τ M :

dimensionless time to maximum reaction rate

Φ :

dimensionless group defined in (4.8)

Ω :

dimensionless group defined in (4.6)

ad:

adiabatic conditions

c:

critical value

j:

jacket

ma:

maximum allowable value

max :

maximum value

r:

reactor

0:

initial value

o :

reference value

References

  1. J. Adler and J.W. Enig. The critical conditions in thermal explosion theory with reactant consumption. Combustion and Flame, 8:97–103, 1964.

    Article  Google Scholar 

  2. A. Adrover, F. Creta, M. Giona, and M. Valorani. Explosion limits and runaway criteria: a stretching-based approach. Chemical Engineering Science, 62:1171–1183, 2007.

    Article  Google Scholar 

  3. V. Balakotaiah, D. Kodra, and D. Nguyen. Runaway limits for homogeneous and catalytic reactors. Chemical Engineering Science, 50:1149–1171, 1995.

    Article  Google Scholar 

  4. J.A. Barton and P.A. Nolan. Incidents in the chemical industry due to thermal runaway chemical reactions. In Proc. Conference and Exhibition on Techniques for Assessment of Chemical Reaction Hazards, IBC, London, 1989.

    Google Scholar 

  5. J. Bosch, F. Strozzi, J.P. Zbilut, and J.M. Zaldívar. On-line runaway detection in isoperibolic batch and semibatch reactors using the divergence criterion. Computers and Chemical Engineering, 28:527–544, 2004.

    Article  Google Scholar 

  6. J.C. Etchells. Prevention and control of exothermic runaway. In Proc. Conference on Assessment and Control of Chemical Reaction Hazards, IBC, London, 1993.

    Google Scholar 

  7. J.M.H. Fortuin, J.J. Heiszwolf, and C.S. Bildea. Design procedure for safe operations in agitated batch reactors. AIChE Journal, 47(3):920–928, 2001.

    Article  Google Scholar 

  8. N.N. Semenov. Zur Theorie des Verbrennungsprozesses. Zeitschrift für Physik, 48:571–582, 1928.

    Article  Google Scholar 

  9. F. Strozzi and J.M. Zaldívar. Thermal stability of batch chemical reactors by sensitivity calculation based on Lyapunov exponents. Chemical Engineering Science, 49:2681–2688, 1994.

    Article  Google Scholar 

  10. F. Strozzi, J.M. Zaldívar, A.E. Kronberg, and K.R. Westerterp. On-line runaway detection in batch reactors using chaos theory techniques. AIChE Journal, 45(11):2429–2443, 1999.

    Article  Google Scholar 

  11. P.H. Thomas and P.C. Bowes. Some aspects of the self-heating and ignition of solid cellulosic materials. British Journal of Applied Physics, 12:222–229, 1961.

    Article  Google Scholar 

  12. U.S. Environmental Protection Agency. How to prevent runaway reactions. Document 550-F99-004, 1999.

    Google Scholar 

  13. R.J. van Welsenaere and G.F. Froment. Parametric sensitivity and runaway in fixed bed catalytic reactors. Chemical Engineering Science, 25:1503–1516, 1970.

    Article  Google Scholar 

  14. A. Varma, M. Morbidelli, and H. Wu. Parametric Sensitivity in Chemical Systems. Cambridge University Press, Cambridge, 1999.

    Book  Google Scholar 

  15. E. Velo, C.M. Bosch, and F. Recasens. Thermal safety of batch reactors and storage tanks. Development and validation of runaway boundaries. Industrial & Engineering Chemistry Research, 35(4):1288–1299, 1996.

    Article  Google Scholar 

  16. K.R. Westerterp and E.J. Molga. Safety and runaway prevention in batch and semibatch reactors—A review. Chemical Engineering Research and Design, 84(A7):543–552, 2006.

    Article  Google Scholar 

  17. H. Wu, M. Morbidelli, and A. Varma. An approximate criterion for reactor thermal runaway. Chemical Engineering Science, 53:3341–3344, 1998.

    Article  Google Scholar 

  18. J.M. Zaldívar, J. Cano, M.A. Alós, J. Sempere, R. Nomen, D. Lister, G. Maschio, T. Obertopp, E.D. Gilles, J. Bosch, and F. Strozzi. A general criterion to define runaway limits in chemical reactors. Journal of Loss Prevention in the Process Industries, 16:187–200, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Caccavale .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Caccavale, F., Iamarino, M., Pierri, F., Tufano, V. (2011). Thermal Stability. In: Control and Monitoring of Chemical Batch Reactors. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-0-85729-195-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-195-0_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-194-3

  • Online ISBN: 978-0-85729-195-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics