Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 1397 Accesses

Abstract

This chapter provides a general introduction to the identification of mathematical models and to the methods for estimating the relevant adjustable parameters. First, the Bayesian approach is briefly discussed as compared to Popper’s falsificationism. Then, the maximum likelihood and weighted least squares criteria are derived from the concept of conditioned probability. The different optimization techniques for parameter estimation are reviewed, with a particular emphasis on the resolution of implicit nonlinear models, which are encountered in chemical kinetics when analyzing experimental data measured in batch chemical reactors. Finally, a quantitative example, based on the phenol–formaldehyde reaction introduced in Chap. 2, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

reactant phenol

C :

concentration [mol m−3]

Co:

confirmation of a theory

d :

experimental data

D :

matrix of experimental data

e :

experimental error

E a :

activation energy [J mol−1]

Ex:

experimental results

f :

function in an implicit mathematical model

f p :

probability density function

G :

positive definite matrix

H :

Hessian matrix

ΔH R :

molar enthalpy change of reaction [J mol−1]

I:

reaction intermediate

I :

identity matrix

k 0 :

preexponential factor [(mol m−3)1−n s−1]

k c :

rate constant [(mol m−3)1−n s−1]

n :

reaction order

N C :

number of dependent or state variables or of components

N D :

number of data in the sample

N L :

number of lumped chemical reactions

N M :

number of measured variables

N P :

number of adjustable parameters

N U :

number of input variables or constants

N Z :

number of isothermal runs

p :

probability

P:

desired product, trimethylolphenol

\(\dot{q}\) :

specific thermal power [J m−3 s−1]

R :

reaction rate [mol m−3 s−1]

\(\mathcal{R}\) :

universal gas constant [J mol−1 K−1]

\({\hat{s}}_{\mathrm{D}}^{2}\) :

corrected sample variance

T :

temperature [K]

Th:

theory

U :

objective function

u :

vector of input variables

V :

covariance

x :

vector of state variables

y :

vector of measured state variables (outputs)

Y :

matrix of computed values to be compared with the experimental data

\(y_{\dot{q}}\) :

computed value of the specific thermal power [J m−3 s−1]

w :

weights

W:

undesired product

α :

constant in (3.66)

γ :

coefficient in (3.31)

Γ :

matrix of coefficients in (3.32)

ε :

error generated by the model

ζ:

generic random variable

θ :

adjustable parameter

θ :

vector of adjustable parameters

κ :

step length

λ :

damping factor

ν:

corrective factor for the Levenberg–Marquardt method

σ 2 :

universe variance

σ C :

root mean squared errors for the concentrations

\(\sigma_{\dot{q}}\) :

root mean squared errors for the specific thermal power

ϕ :

partial sensitivity

φ :

function in an explicit mathematical model

Φ :

function in a linear model

ψ :

known term in (3.31)

Ψ :

matrix of known terms in (3.33)

av:

mean value

m:

measured value

max :

maximum

min :

minimum

r:

reactor

s :

step index in the nonlinear optimization procedure

\(\widehat{~}\) :

best estimate or optimal value

o :

reference value

References

  1. Y.A. Bard. Nonlinear Parameter Estimation. Academic Press, New York, 1974.

    MATH  Google Scholar 

  2. R.D. Bartusiak, C. Georgakis, and M.J. Reilly. Nonlinear feedforward/feedback control structures designed by reference synthesis. Chemical Engineering Science, 44:1837–1851, 1989.

    Article  Google Scholar 

  3. T. Bayes. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370–418, 1763.

    Article  Google Scholar 

  4. B. Bhattacharjee, D.A. Schwer, P.I. Barton, and W.H. Green Jr. Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms. Combustion and Flame, 135:191–208, 2003.

    Article  Google Scholar 

  5. L.T. Biegler and J.J. Damiano. Nonlinear parameter estimation: a case study comparison. AIChE Journal, 32(1):29–45, 1986.

    Article  Google Scholar 

  6. P. Bilardello, X. Joulia, J.M. Le Lann, H. Delmas, and B. Koehret. A general strategy for parameter estimation in differential-algebraic systems. Computers and Chemical Engineering, 17(5/6):517–525, 1993.

    Article  Google Scholar 

  7. D. Bonvin. Optimal operation of batch reactors—a personal view. Journal of Process Control, 8(5/6):355–368, 1998.

    Article  Google Scholar 

  8. A. Cauchy. Méthodes générales pour la résolution des systémes d’équations simultanées. C. R. Acad. Sci. Paris, 25:536–538, 1847.

    Google Scholar 

  9. K. Edwards, T.F. Edgar, and V.I. Manousiouthakis. Kinetic model reduction using genetic algorithms. Computers and Chemical Engineering, 22:239–246, 1998.

    Article  Google Scholar 

  10. R.A. Fisher. Statistical Methods, Experimental Design and Scientific Inference. Oxford University Press, Oxford, 1990.

    MATH  Google Scholar 

  11. M.A. Henson and D.E. Seborg. Nonlinear Process Control. Prentice Hall, Upper Saddle River, 1997.

    Google Scholar 

  12. D.M. Himmelblau and K. B. Bishoff. Process Analysis and Simulation. Wiley, New York, 1968.

    MATH  Google Scholar 

  13. K. Levenberg. A method for the solution of certain non-linear problems in least squares. The Quarterly of Applied Mathematics, 2:164–168, 1944.

    MathSciNet  MATH  Google Scholar 

  14. L. Ljung. System Identification. Theory for the User. Prentice Hall, Upper Saddle River, 1999.

    Google Scholar 

  15. D. Marquardt. An algorithm for least squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11:431–441, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Marquardt. Nonlinear model reduction for optimization based control of transient chemical processes. AIChE Symposium Series 326, 98:12–42, 2001.

    Google Scholar 

  17. K. Popper. The Logic of Scientific Discovery. Hutchinson, London, 1959.

    MATH  Google Scholar 

  18. E. Ranzi, M. Dente, A. Goldaniga, G. Bozzano, and T. Faravelli. Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures. Progress in Energy and Combustion Science, 27:99–139, 2001.

    Article  Google Scholar 

  19. S.S. Rao. Engineering Optimization: Theory and Practice, 4th Edition. Wiley, Hoboken, 2009.

    Google Scholar 

  20. W. Su and H. Huang. Development and calibration of a reduced chemical kinetic model of n-heptane for HCCI engine combustion. Fuel, 84:1029–1040, 2005.

    Article  Google Scholar 

  21. F. Tjärnström and L. Ljung. L 2 model reduction and variance reduction. Automatica, 38:1517–1530, 2002.

    Article  MATH  Google Scholar 

  22. P.F. Tupper. Adaptive model reduction for chemical kinetics. BIT Numerical Mathematics, 42:447–465, 2002.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Caccavale .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Caccavale, F., Iamarino, M., Pierri, F., Tufano, V. (2011). Identification of Kinetic Parameters. In: Control and Monitoring of Chemical Batch Reactors. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-0-85729-195-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-195-0_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-194-3

  • Online ISBN: 978-0-85729-195-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics