Advertisement

The Chemical Batch Reactor

  • Fabrizio Caccavale
  • Mario Iamarino
  • Francesco Pierri
  • Vincenzo Tufano
Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter faces the description of the main object of the book, namely, the chemical batch reactor. First, the batch reactor is compared to the continuous reactors in the light of ideal physical models, the main ideas of chemical kinetics are reviewed, and the relevant modeling of the isothermal batch reactor is developed. Then, the heat balance introduces elements of realism in the modeling, in particular the coupling of the reactor with the heat exchange device, which is used for both heating and cooling. On the basis of these results, a case study is presented, both in the form of the phenol–formaldehyde reaction and of its generalization in the wider class of irreversible nonchain reactions. They are both used in the following chapters as illustrative examples for identification, control, and diagnosis. Finally, some remarks are given on measuring and manipulating the reactor status, thus providing the reader with a few useful basic concepts and information.

Keywords

Heat Exchange Batch Reactor Stoichiometric Coefficient Online Measurement Formaldehyde Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Principal Symbols

A

reactant A

B

reactant B

c

mass heat capacity [J kg−1 K−1]

C

concentration [mol m−3]

DPh

aggregate dimers

Ea

activation energy [J mol−1]

ΔER

internal energy change of reaction [J mol−1]

F

formaldehyde

FV

volumetric flow rate [m3 s−1]

FM

molar flow rate [mol s−1]

ΔHR

molar enthalpy change of reaction [J mol−1]

I

reaction intermediate

k0

preexponential factor [(mol m−3)1−n  s−1]

kc

rate constant [(mol m−3)1−n  s−1]

Keq

equilibrium constant

m

mass [kg]

MPh

mono- and di-methylolphenols

n

order of reaction

N

number of moles [mol]

NC

number of species

NR

number of reactions

P

reaction product

Ph

phenol

PPh

polyphenols

R

reaction rate [mol m−3 s−1]

\(\mathcal{R}\)

universal gas constant [J mol−1 K−1]

R

radical species

S

heat transfer area [m2]

\(\mathcal{S}\)

selectivity

t

time [s]

tb

batch time [s]

tP

residence time [s]

T

temperature [K]

TMPh

trimethylolphenol

U

overall heat transfer coefficient [J m−2 K−1 s−1]

V

volume [m3]

X

degree of conversion

Greek Symbols

ρ

density [kg m−3]

υ

stoichiometric coefficient

Subscripts and Superscripts

a

ambient conditions

A

reactant A

ad

adiabatic conditions

B

reactant B

in

inlet

j

jacket

max 

maximum

min 

minimum

out

outlet

r

reactor

0

initial value

°

reference value

References

  1. 1.
    J.H. Altman. Densitometry measurements. In J.C. Webster, editor, Measurement, Instrumentation, and Sensors Handbook, 2nd Edition, Chap. 57. CRC Press, Boca Raton, 1999. Google Scholar
  2. 2.
    N.A. Anderson. Instrumentation for Process Measurement and Control. CRC Press, Boca Raton, 1998. Google Scholar
  3. 3.
    D. Bonvin. Optimal operation of batch reactors—a personal view. Journal of Process Control, 8(5/6):355–368, 1998. CrossRefGoogle Scholar
  4. 4.
    M. Buback and A.M. van Herk. Radical Polymerization: Kinetics and Mechanism. Wiley-VCH, Weinheim, 2007. CrossRefGoogle Scholar
  5. 5.
    K.H.L. Chau, R. Goehner, E. Drubetsky, H.M. Brady, W.H. Bayles, Jr., and P.C. Pedersen. Pressure and sound measurement. In J.C. Webster, editor, Measurement, Instrumentation, and Sensors Handbook, 2nd Edition, Chap. 26. CRC Press, Boca Raton, 1999. Google Scholar
  6. 6.
    I. Chorkendorff and J.W. Niemantsverdriet. Concept of Modern Catalysis and Kinetics. Wiley-VCH, Weinheim, 2003. CrossRefGoogle Scholar
  7. 7.
    J.A. Dean. The Analytical Chemistry Handbook. McGraw Hill, New York, 1995. Google Scholar
  8. 8.
    K.C. Eapen and L.M. Yeddenapalli. Kinetics and mechanism of the alkali-catalyzed addition of formaldehyde to phenol and substituted phenols. Die Makromolekulare Chemie, 119(2766):4–16, 1968. CrossRefGoogle Scholar
  9. 9.
    W. Hesse. Phenolic resins. In Ullmann’s Encyclopedia of Industrial Chemistry, 6th Edition. Wiley, New York, 2001. Google Scholar
  10. 10.
    O. Levenspiel. Chemical Reaction Engineering, 3rd Edition. Wiley, New York, 1999. Google Scholar
  11. 11.
    L.B. Manfredi, C.C. Riccardi, O. de la Osa, and A. Vazquez. Modelling of resol resin polymerization with various formaldehyde/phenol molar ratios. Polymer International, 50:796–802, 2001. CrossRefGoogle Scholar
  12. 12.
    J. Nielsen, J. Villadsen, and G. Lidén. Bioreaction Engineering Principles, 2nd Edition. Kluwer Academic, New York, 2003. CrossRefGoogle Scholar
  13. 13.
    R.P. Reed. Thermal effects in industrial electronics circuits. In J.D. Irwin, editor, Industrial Electronics Handbook. CRC Press, Boca Raton, 1996. Google Scholar
  14. 14.
    C.C. Riccardi, G. Astarloa Aierbe, J.M. Echeverria, and I. Mondragon. Modelling of phenolic resin polymerisation. Polymer, 43:1631–1639, 2002. CrossRefGoogle Scholar
  15. 15.
    N.F. Sheppard, Jr. and A. Giuseppi-Elie. PH measurements. In J.C. Webster, editor, Measurement, Instrumentation, and Sensors Handbook, 2nd Edition. Chap. 71. CRC Press, Boca Raton, 1999. Google Scholar
  16. 16.
    G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, and Z. Qin. GRI-Mech 3.0. A kinetic mechanism to model natural gas combustion. www.me.berkley.edu/grimech/.
  17. 17.
    P. Trambouze and J.-P. Euzen. Chemical Reactors: From Design to Operation. Editions Technip, Paris, 2004. Google Scholar
  18. 18.
    S. van Herwaarden. Calorimetry measurement. In J.C. Webster, editor, Measurement, Instrumentation, and Sensors Handbook, 2nd Edition, Chap. 36. CRC Press, Boca Raton, 1999. Google Scholar
  19. 19.
    J.G. Webster, editor. Measurement, Instrumentation, and Sensors Handbook. CRC Press, Boca Raton, 1999. Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Fabrizio Caccavale
    • 1
  • Mario Iamarino
    • 2
  • Francesco Pierri
    • 3
  • Vincenzo Tufano
    • 4
  1. 1.Dipartimento di Ingegneria e Fisica dell’AmbienteUniversità degli Studi della BasilicataPotenzaItaly
  2. 2.Dipartimento di Ingegneria e Fisica dell’AmbienteUniversità degli Studi della BasilicataPotenzaItaly
  3. 3.Dipartimento di Ingegneria e Fisica dell’AmbienteUniversità degli Studi della BasilicataPotenzaItaly
  4. 4.Dipartimento di Ingegneria e Fisica dell’AmbienteUniversità degli Studi della BasilicataPotenzaItaly

Personalised recommendations