Current and Future Applications of Polymer Composites in the Field of Tribology

  • Klaus Friedrich
  • Li Chang
  • Frank Haupert
Conference paper


The use of polymers and polymer composites in various tribological situations has become state of the art. Nevertheless, further developments are still under way to explore new fields of application for these materials and to tailor their properties for more extreme loading conditions. This overview describes how to design polymeric composites in order to operate under low friction and low wear against various counterparts. Particular emphasis is focused on special fillers (including spherical nano-particles), often in combination with classical tribo-fillers (such as carbon fibers, graphite flakes, polytetrafluoroethylene particles), for the tribological improvement of thermoplastics and thermosets. An attempt is made to do systematic parameter studies by the use of artificial neural networks. The principle effects are demonstrated by describing practical examples in various fields of application. These include (a) high temperature polymer composites for sliding elements in textile drying machines, (b) friction torque limiters for damped flywheel clutches in modern automotives, (c) epoxy-based particle-filled composites for thick covers of calender rollers in the paper making industry, and (d) thermoplastic nanocomposite coatings for hybrid bushings used in automotive components under the hood, to mention only a few.


Wear Resistance Wear Rate Tribological Property Ultra High Molecular Weight Polyethylene Graphite Flake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the IVW GmbH, Technical University Kaiserslautern where most of the results were generated. One of us, Dr.-Ing. L. Chang greatly appreciates the support of the Alexander von Humboldt-Foundation for his research stay at IVW during the year 2008.


  1. 1.
    Fischer S, Marom G (1987) The flexural behaviour of aramid fibre hybrid composite materials. Compos Sci Technol 28:291–314CrossRefGoogle Scholar
  2. 2.
    Hofer K Jr, Stander M, Bennett L (1978) Degradation and enhancement of the fatigue behavior of glass/graphite/epoxy hybrid composites after accelerated aging. Polym Eng Sci 18:120–127CrossRefGoogle Scholar
  3. 3.
    Schulte K, Reese E, Chou TW (1987) Fatigue behaviour and damage development in woven fabric and hybrid fabric composites. In: Mathews FL et al (eds) Proceedings of ICCM-VI/ECCM-11, 4th edn. Elsevier, LondonGoogle Scholar
  4. 4.
    Marom G, Harel H, Friedrich K, Schulte K, Wagner HD (1989) Fatigue behaviour and rate-dependent properties of aramid fibre/carbon fibre hybrid composites. Compos A 6:537–544Google Scholar
  5. 5.
    Nalwa HS (2003) Handbook of organic–inorganic hybrid materials and nanocomposites, vol 2. American Scientific Publishers, Stevenson RanchGoogle Scholar
  6. 6.
    Wetzel B, Haupert F, Zhang MQ (2003) Epoxy nanocomposites with high mechanical and tribological performance. Compos Sci Technol 63:2055–2067CrossRefGoogle Scholar
  7. 7.
    Wetzel B (2006) Mechanische Eigenschaften von Nanokompositen aus Epoxydharz und keramischen Nanopartikeln. Dissertation Technische Universität Kaiserslautern. In: Schlarb AK (ed) IVW-Schriftenreihe, Band 69, Kaiserslautern, GermanyGoogle Scholar
  8. 8.
    Zhang MQ, Rong MZ, Friedrich K (2003) Processing and properties of non-layered nanoparticle reinforced thermoplastic composites. In: Nalwa HS (ed) Handbook of organic–inorganic hybrid materials and nanocomposites. American Scientific Publishers, Los AngelesGoogle Scholar
  9. 9.
    Chow TS (1980) Review: the effect of particle shape on the mechanical properties of filled polymers. J Mater Sci 15:1873–1888CrossRefGoogle Scholar
  10. 10.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652CrossRefGoogle Scholar
  11. 11.
    Sullivan JL, Blais EJ, Houston D (1993) Physical aging in the creep behavior of thermosetting and thermoplastic composites. Compos Sci Technol 47:389–403CrossRefGoogle Scholar
  12. 12.
    Zhang Z, Yang JL, Friedrich K (2004) Creep resistant polymeric nanocomposites. Polymer 45:3481–3485CrossRefGoogle Scholar
  13. 13.
    Giltrow JP, Lancaster JK (1970) The role of the counterface in the friction and wear of carbon fibre reinforced thermosetting resins. Wear 16:359–374CrossRefGoogle Scholar
  14. 14.
    Lancaster JK (1972) Polymer-based bearing materials, the role of fillers and fibre reinforcement. Tribology 5:249–255CrossRefGoogle Scholar
  15. 15.
    Albert K, Schledjewski R, Harbaugh M, Bleser S, Jamison R, Friedrich K (1994) Characterization of wear in composite material orthopaedic implants. Part II: the implant/bone interface. Biomed Mater Eng 4:199–211Google Scholar
  16. 16.
    Czichos H, Habig KH (1992) Tribologie Handbuch Reibung und Verschleiss. Vieweg, BraunschweigGoogle Scholar
  17. 17.
    Friedrich K (1997) Wear performance of high temperature polymers and their composites. In: Luise RR (ed) Application of high temperature polymers. CRC Press, Boca RatonGoogle Scholar
  18. 18.
    Reinicke R, Haupert F, Friedrich K (1998) On the tribological behaviour of selected, injection moulded thermoplastic composites. Compos A 29:763–771CrossRefGoogle Scholar
  19. 19.
    Häger AM, Davies M (1993) Short-fiber reinforced, high temperature resistant polymers for a wide field of tribological applications. In: Friedrich K (ed) Advances in composite tribology. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Schwartz CJ, Bahadur S (2000) Studies on the tribological behavior and transfer film-counterface bond strength for polyphenylene sulfide filled with nanoscale alumina particles. Wear 237:261–273CrossRefGoogle Scholar
  21. 21.
    Zhang LC, Zarudi I, Xiao KQ (2006) Novel behaviour of friction and wear of epoxy composites reinforced by carbon nanotubes. Wear 261:806–811CrossRefGoogle Scholar
  22. 22.
    Haupert F, Xian G, Oster F, Walter R, Friedrich K (2004) Tribological behaviour of nano-particle reinforced polymeric coatings. In: Bartz WJ (ed) Proceedings of 14th International Colloquium Tribology, StuttgartGoogle Scholar
  23. 23.
    Werner P, Altstädt V, Jaskulka R, Jacobs O, Sandler JKW, Shaffer MSP, Windle A (2004) Tribological behaviour of carbon-nanofiber-reinforced poly(ether ether ketone). Wear 257:1006–1014CrossRefGoogle Scholar
  24. 24.
    Zhang Z, Breidt C, Chang L, Haupert F, Friedrich K (2004) Enhancement of the wear resistance of epoxy: short carbon fibre, graphite, PTFE and nano-TiO2. Compos A 35:1385–1392CrossRefGoogle Scholar
  25. 25.
    Friedrich K, Reinicke R, Zhang Z (2002) Wear of polymer composites. J Eng Tribol 216:415–426Google Scholar
  26. 26.
    Cirino M, Friedrich K, Pipes RB (1988) Evaluation of polymer composites for sliding and abrasive wear applications. Compos A 19:383–392CrossRefGoogle Scholar
  27. 27.
    Friedrich K, Theiler G, Klein P (2008) Polymer composites for tribological applications in a range between liquid helium and room temperature. In: Sinha SK, Briscoe BJ (eds) Polymer tribology. Imperial College Press, LondonGoogle Scholar
  28. 28.
    Gebhard A, Knör N, Haupert F, Schlarb AK (2007) Nanopartikelverstärkte Hochleistungsthermoplaste für extreme tribologische Belastungen im Automobilbau. In: Proceedings of 48. Tribologie-Fachtagung, GfT, Göttingen I:22/1–22/11Google Scholar
  29. 29.
    Zhang Z, Friedrich K (2005) Tribological characteristics of micro- and nanoparticle filled polymer composites. In: Friedrich K, Fakirov S, Zhang Z (eds) Polymer composite—from nano- to macro-scale. Springer, New YorkGoogle Scholar
  30. 30.
    Chang L, Zhang Z, Ye L, Friedrich K (2008) Synergistic effects of nanoparticles and traditional tribo-fillers on sliding wear of polymeric hybrid composites. In: Friedrich K, Schlarb AK (eds) Tribology of polymer nanocomposites. Elsevier, AmsterdamGoogle Scholar
  31. 31.
    Xue Q, Wang Q (1997) Wear mechanisms of polyetheretherketone composites filled with various kinds of SiC. Wear 213:54–58CrossRefGoogle Scholar
  32. 32.
    Wang Q, Xue Q, Liu H, Shen W, Xu J (1996) The effect of particle size of nanometer ZrO2 on the tribological behavior of PEEK. Wear 198:216–219CrossRefGoogle Scholar
  33. 33.
    Xing XS, Li RKY (2004) Wear behavior of epoxy matrix composites filled with uniform sized sub-micron spherical silica particles. Wear 256:21–26CrossRefGoogle Scholar
  34. 34.
    Bahadur S, Sunkara C (2005) Effect of transfer film structure, composition and bonding on the tribological behavior of polyphenylene sulfide filled with nano particles of TiO2, ZnO, CuO and SiC. Wear 258:1411–1421CrossRefGoogle Scholar
  35. 35.
    Friedrich K (1986) Wear of reinforced polymers by different abrasive counterparts. In: Friedrich K (ed) Friction and wear of polymer composites. Elsevier, AmsterdamGoogle Scholar
  36. 36.
    Zhang MQ, Rong MZ, Yu S, Wetzel B, Friedrich K (2002) Improvement of tribological performance of epoxy by the addition of irradiation grafted nano-inorganic particles. Macromol Mater Eng 287:111–115CrossRefGoogle Scholar
  37. 37.
    Shi G, Zhang MQ, Rong MZ, Wetzel B, Friedrich K (2003) Friction and wear of low nanometer Si3N4 filled epoxy composites. Wear 254:784–796CrossRefGoogle Scholar
  38. 38.
    Shi G, Zhang M, Rong M, Wetzel B, Friedrich K (2003) Sliding wear behavior of epoxy containing nano-Al2O3 particles with different pretreatments. Wear 256:1072–1081CrossRefGoogle Scholar
  39. 39.
    Wetzel B, Haupert F, Friedrich K, Zhang MQ, Rong MZ (2002) Impact and wear resistance of polymer nanocomposites at low filler content. Polym Eng Sci 42:1919–1927CrossRefGoogle Scholar
  40. 40.
    Sreekala MS, Eger C (2005) Property improvements of an epoxy resin by nanosilica particle reinforcement. In: Friedrich K, Fakirov S, Zhang Z (eds) Polymer composites—from nano- to macro-scale. Springer, New YorkGoogle Scholar
  41. 41.
    Li F, Hu K, Li J, Zhao B (2002) The friction and wear characteristics of nanometer ZnO filled polytetrafluoroethylene. Wear 249:877–882CrossRefGoogle Scholar
  42. 42.
    Sawyer WG, Freudenberg KD, Bhimaraj P, Schadler LS (2003) A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254:573–580Google Scholar
  43. 43.
    Friedrich K, Zhang Z, Klein P (2005) Wear of polymer composites. In: Stachowiak GW (ed) Wear—materials, mechanisms and practice. Wiley, ChichesterGoogle Scholar
  44. 44.
    Cho MH, Bahadur S (2005) Study of the tribological synergistic effects in CuO-filled and fiber-reinforced polyphenylene sulfide composites. Wear 258:835–845CrossRefGoogle Scholar
  45. 45.
    Zhang ZZ, Su FH, Wang K, Jiang W, Men XH, Liu WM (2005) Study on the friction and wear properties of carbon fabric composites reinforced with micro- and nano-particles. Mater Sci Eng 404:251–258CrossRefGoogle Scholar
  46. 46.
    Su FH, Zhang ZZ, Wang K, Jiang W, Men XH, Liu WM (2006) Friction and wear properties of carbon fabric composites filled with nano-Al2O3 and nano-Si3N4. Compos A 37:1351–1357CrossRefGoogle Scholar
  47. 47.
    Su FH, Zhang ZZ, Liu WM (2006) Mechanical and tribological properties of carbon fabric composites filled with several nano-particulates. Wear 260:861–868CrossRefGoogle Scholar
  48. 48.
    Zhang Z, Haupert F, Friedrich K (2005) Enhancement of the wear resistance of polymer composites by nano-fillers. German Patent Appl. 103 29 228.4-43Google Scholar
  49. 49.
    Jiang Z, Gyurova LA, Schlarb AK, Friedrich K, Zhang Z (2008) Study on friction and wear behavior of polyphenylene sulfide composites reinforced by short carbon fibers and sub-micro TiO2 particles. Compos Sci Technol 68:734–742CrossRefGoogle Scholar
  50. 50.
    Chang L, Zhang Z, Breidt C, Friedrich K (2005) Tribological properties of epoxy nanocomposites: I. Enhancement of the wear resistance by nano-TiO2 particles. Wear 258:141–148CrossRefGoogle Scholar
  51. 51.
    Chang L, Zhang Z (2006) Tribological properties of epoxy nanocomposites: II. A combinative effect of short carbon fiber and nano-TiO2. Wear 260:869–878CrossRefGoogle Scholar
  52. 52.
    Chang L, Zhang Z, Zhang H, Schlarb AK (2006) On the sliding wear of nanoparticles filled polyamide 6,6. Compos Sci Technol 66:3188–3198CrossRefGoogle Scholar
  53. 53.
    Chang L, Zhang Z, Zhang H, Friedrich K (2005) Effect of nanoparticles on the tribological behavior of short carbon fiber reinforced poly(etherimide) composites. Tribol Int 38:966–973CrossRefGoogle Scholar
  54. 54.
    NN (1989) Die Spannmaschine mit horizontaler Kettenrückführung für Artos: Famatex Spannrahmen der Typenreihe btm 5300.
  55. 55.
    Lu Z, Friedrich K (1997) Polymere Hochtemperatur-Verbundwerkstoffe für Anwendungen als Gleitelemente. Mater Wiss Werkst Tech 28:116–123CrossRefGoogle Scholar
  56. 56.
    NN (2002) The maintenance-free heavy duty bushing, no. 5187 E.
  57. 57.
    Haupert F, Chen C, Friedrich K (1995) Manufacturing of thermoplastic composite parts by combined filament winding and injection molding. In: Proceedings of international conference on composite materials ICCM-10, Whistler, Canada, August 13–18, vol. III. Woodhead Publ. Ltd, Cambridge, pp 381–388Google Scholar
  58. 58.
    Friedrich K, Haupert F, Chen C, Flöck J (1996) New manufacturing techniques for thermoplastic composite bearings. In: Wang TC, Chou TW (eds) Progress in advanced materials and mechanics. Proceedings of ICAM ‘96. Peking University Press, BeijingGoogle Scholar
  59. 59.
    NN (2004) Hochpräzisionskugellager für den Dentalbereich.
  60. 60.
    NN (2006) Chemiepumpen mit Magnetkupplung.
  61. 61.
    Prehn R (2007) Tribologisch optimierte Hochleistungsverbundwerkstoffe für den Einsatz unter abrasiven Bedingungen. Dissertation Technische Universität Kaiserslautern, June 6.
  62. 62.
    Prehn R, Haupert F, Friedrich K (2005) Sliding wear performance of polymer composites under abrasive and water lubricated conditions for pump applications. Wear 259:693–696CrossRefGoogle Scholar
  63. 63.
    NN (2002) Ivory and Ivory Xtreme, first commercial covers to bring the exponential benefits of nanoparticle technology to supercalender applications.
  64. 64.
    Haupert F, Paasonen J, Schwambach D, Löhnert K (1999) Optimierung von Hochleistungs-Verbundwerkstoff-Beschichtungen für Kalanderwalzen in der Papierindustrie. Wochenbl Pap Fabr 8:519–521Google Scholar
  65. 65.
    NN (2008) Schaberklingen aus Kunststoff/Verbundfasermaterial.
  66. 66.
    NN (2008) Bleifreier Stahl-Kunststoff-Verbundwerkstoff KS P212.
  67. 67.
    Oster F, Haupert F, Friedrich K, Bickle W, Müller M (2004) Tribologische Hochleistungsbeschichtungen aus neuartigen Polyetheretherketon (PEEK)-Compounds. Tribol Schmiertech 51(3):17–24Google Scholar
  68. 68.
    Oster F, Haupert F, Friedrich K, Müller M, Bickle W (2004) Neuartige Polyetheretherketon (PEEK)-Beschichtungen für hohe tribologische Beanspruchungen. Mater Wiss Werkst Tech 35:690–695CrossRefGoogle Scholar
  69. 69.
    Oster F (2005) Hochtemperaturbeständige Polymer-Beschichtungen für tribologische Anwendungen. Dissertation Technische Universität Kaiserslautern. In: Schlarb AK (ed) IVW-Schriftenreihe, Band 53, Kaiserslautern, GermanyGoogle Scholar
  70. 70.
    Gebhard A, Englert M, Bittmann B, Haupert F, Schlarb AK (2007) Nanoparticle reinforced polymeric composites for tribological applications in the automotive industry. In: Proceedings of 2nd international conference on micro- and nano-technology, ViennaGoogle Scholar
  71. 71.
    Reinicke R (2000) Eigenschaftsprofil neuer Verbundwerkstoffe für tribologische Anwendungen im Automobilbau. Dissertation Technische Universität Kaiserslautern. In: Neitzel M (ed) IVW-Schriftenreihe, Band 21, Kaiserslautern, GermanyGoogle Scholar
  72. 72.
    Velten K, Reinicke R, Friedrich K (2000) Wear volume prediction with artificial neural networks. Tribol Int 33:731–736CrossRefGoogle Scholar
  73. 73.
    Zhang Z, Friedrich K, Velten K (2002) Prediction on tribological properties of short fibre composites using artificial neural networks. Wear 252:668–675Google Scholar
  74. 74.
    Jiang Z, Gyurova L, Zhang Z, Friedrich K, Schlarb AK (2008) Neural network based prediction on mechanical and wear properties of short fiber reinforced polyamide composites. Mater Des 29:628–637CrossRefGoogle Scholar
  75. 75.
    Gebhard A, Haupert F, Schlarb AK (2008) Development of nanostructured slide coatings for automotive components. In: Friedrich K, Schlarb AK (eds) Tribology of polymeric nanocomposites. Elsevier, AmsterdamGoogle Scholar
  76. 76.
    Ruckdäschel H, Sandler JKW, Altstädt V (2008) On the friction and wear of carbon nanofiber-reinforced PEEK-based polymer composites. In: Friedrich K, Schlarb AK (eds) Tribology of polymeric nanocomposites. Elsevier, AmsterdamGoogle Scholar
  77. 77.
    Jacobs O, Schädel B (2008) Wear behavior of carbon nanotube-reinforced polyethylene and epoxy composites. In: Friedrich K, Schlarb AK (eds) Tribology of polymeric nanocomposites. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.IVW GmbHTechnical University KaiserslauternKaiserslauternGermany
  2. 2.School of Aerospace, Mechanical and Mechatronic EngineeringUniversity of SydneySydneyAustralia
  3. 3.CEREM, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations