Multifunctional Polymer Based Structures for Human Tissues Reconstruction

  • P. A. Netti
  • L. Ambrosio
Conference paper


In the last few decades, the field of biomaterial both for tissue repair and regeneration has undergone to a profound innovation. The advent of novel polymer processing technologies along with reliable and robust finite element computing tools have been pivotal in the recent advancement in production and design of tissue repair devices such as hip joint prosthesis, bone fixation screws and plate, intramedullar pins, and ligament prosthesis. Current tissue repair material design is tailored to the specific application both in terms of geometrical constrains and biomechanical performances. Following a bioinspired approach, these materials at present are anisotropic and heterogeneous with point-wise engineered properties and provide a complete matches of performances with their native counterpart. On the other hand, the extraordinary discoveries of the last two decades on the molecular basis of the cell signaling have induced a substantial change in the conception of scaffold material for tissue regeneration. Novel bioactivated scaffolds, able to recapitulate extracellular matrix function in a temporally coordinated and spatially orchestrated manner, represent at present the forefront of the biomaterial research. The key issue here is to encode required biological signals within the scaffold so that all aspects of cell response—adhesion and migration, proliferation and phenotype choice—can be controlled. In achieving this objective nanotechnology, bottom-up design approach and solid free-form fabrication along with the exploitation of the self-assembly molecular machinery could play key roles. In this chapter, the main achievements in the design of biomaterials for both human tissue repair and regeneration will be presented and discussed along with future challenge.


Bioactive Molecule Tissue Engineering Scaffold PLGA Scaffold Peptide Amphiphile Adaptive Bone Remodel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Netti PA, D’Amore A, Ronca D, Ambrosio L, Nicolais L (1996) Structure–mechanical properties relationship of natural tendons and ligaments. J Mater Sci Mater Med 7:525–530CrossRefGoogle Scholar
  2. 2.
    Evans SL, Gregson PJ (1998) Composite technology in load-bearing orthopaedic implants. Biomaterials 19:1329–1342CrossRefGoogle Scholar
  3. 3.
    Nicolais L (1975) Mechanics of composites. Polym Eng Sci 15:137–149CrossRefGoogle Scholar
  4. 4.
    Ambrosio L, De Santis R, Iannace S, Netti PA, Nicolais L (1998) Viscoelastic behavior of composite ligament prostheses. J Biomed Mater Res 42:6–12CrossRefGoogle Scholar
  5. 5.
    Apicella A, Liguori A, Masi E, Nicolais L (1995) Experimental techniques and design in composite materials. Sheffield Academic Press, Sheffield, pp 323–337Google Scholar
  6. 6.
    De Santis R, Ambrosio L, Di Palma L, Apicella A, Nicolais L (2004) Continuous fiber reinforced polymer as bone model: a synthetic jaw. Compos Sci Technol 64:861–871CrossRefGoogle Scholar
  7. 7.
    Van Rietbergen B, Huiskes R, Weinans H, Sumner DR, Turner TM, Galante JO (1993) The mechanism of bone remodeling and resorption around press-fitted THA stems. J Biomech 26:369–382CrossRefGoogle Scholar
  8. 8.
    Apicella A, Masi E, Nicolais L, Zarone F, De Rosa N, Valletta G (1998) A finite-element model study of occlusal schemes in full-arch implant restoration. J Mater Sci Mater Med 8:191–196CrossRefGoogle Scholar
  9. 9.
    Mihalko WM, Beaudoin AJ, Cardea JA, Krause WR (1992) Finite-element modelling of femoral shaft fracture fixation techniques post total hip arthroplasty. J Biomech 25:469–476CrossRefGoogle Scholar
  10. 10.
    Kuiper JH, Huiskes R (1997) The predictive value of stress shielding for quantification of adaptive bone resorption around hip replacement. J Biomech Eng 119:228–231CrossRefGoogle Scholar
  11. 11.
    Huiskes R, Janssen JD, Slooff TJ (1981) A detailed comparison of experimental and theoretical stress-analyses of a human femur. In: Cowin SC (ed) Mechanical properties of bone. ASME, New York, pp 211–234Google Scholar
  12. 12.
    McNamara BP, Cristofolini L, Toni A, Taylor D (1997) Relationship between bone-prosthesis bonding and load transfer in total hip reconstruction. J Biomech 6:621–630CrossRefGoogle Scholar
  13. 13.
    De Santis R, Prisco D, Apicella A, Ambrosio L, Rengo S, Nicolais L (2000) Carbon fiber post adhesion to resin luting cement in the restoration of endodontically treated teeth. J Mater Sci Mater Med 4:201–206CrossRefGoogle Scholar
  14. 14.
    Kong HJ, Mooney DJ (2007) Microenvironmental regulation of biomacromolecular therapies. Nat Rev Drug Discov 6:455–463CrossRefGoogle Scholar
  15. 15.
    Kleinman HK, Philip D, Hoffman MP (2003) The role of the extracellular matrix in morphogenesis. Curr Opin Biotech 14:526–532CrossRefGoogle Scholar
  16. 16.
    Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55CrossRefGoogle Scholar
  17. 17.
    O’Briena FJ, Harley BA, Yannas IV, Gibsona LJ (2005) The effect of pore size on cell adhesion in collagen–GAG scaffolds. Biomaterials 26:433–441CrossRefGoogle Scholar
  18. 18.
    Fung YC (1993) Biomechanics:mechanical properties of living tissues. Springer-Verlag, New YorkGoogle Scholar
  19. 19.
    Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 2:92–102CrossRefGoogle Scholar
  20. 20.
    De Santis R, Mollica F, Zarone F, Ambrosio L, Nicolais L (2007) Biomechanical effects of titanium implants with full arch bridge rehabilitation on a synthetic model of the human jaw. Acta Biomater 3:121–126CrossRefGoogle Scholar
  21. 21.
    Rho JY, Ashman RB, Turner CH (1993) Young’s modulus of trabecular and cortical bone materials: ultrasonic and microtensile measurements. J Biomech 2:111–119CrossRefGoogle Scholar
  22. 22.
    Bonfield W, Grynpas MG (1997) Anisotropy of the Young’s modulus of bone. Nature 270:453–454CrossRefGoogle Scholar
  23. 23.
    Weiner S, Wagner HD (1998) The material bone: structure–mechanical function relations. Annu Rev Mater Sci 28:271–298CrossRefGoogle Scholar
  24. 24.
    Ziouposet P, Currey JD, Hamer AJ (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res 45:108–116CrossRefGoogle Scholar
  25. 25.
    Silver FH, Seehra GP, Freeman JW, DeVore D (2001) Viscoelastic properties of young and old human dermis: a proposed molecular mechanism for elastic energy storage in collagen and elastin. J Appl Polym Sci 79:134–142CrossRefGoogle Scholar
  26. 26.
    Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24:2161–2175CrossRefGoogle Scholar
  27. 27.
    Ambrosio L, Caprino G, Nicolais L, Nicodemo L, Huang SJ, Guida G, Ronca D (1987) Composite materials for bone fractures fixation. In: Marshall IH (ed) Composite structures. Elsevier Applied Science, LondonGoogle Scholar
  28. 28.
    Alexander H (1997) Composites. In: Ratner BD, Hofman AS, Schoen FJ, Lemons JE (eds) Biomaterial science. Academic Press, San DiegoGoogle Scholar
  29. 29.
    Chang YFK, Goodman S (1998) Composite hip prosthesis design. II Simulation. J Biomed Mater Res 39:102–119CrossRefGoogle Scholar
  30. 30.
    Akay M, Aslan N (1995) An estimation of fatigue life for a carbon fibre/poly ether ether ketone hip joint prosthesis. Proc Inst Mech Eng H 229:93–103Google Scholar
  31. 31.
    Merolli A, Perrone V, Tranquilli Leali P, Ambrosio L, De Santis R, Nicolais L, Gabbi G (1999) Response to polyetherimide based composite materials implanted in muscle and in bone. J Mater Sci Mater Med 10:265–268CrossRefGoogle Scholar
  32. 32.
    De Santis R, Ambrosio L, Nicolais L (2000) Polymer based composite hip prostheses. J Inorg Biochem 79:97–102CrossRefGoogle Scholar
  33. 33.
    Wilke HJ, Seiz RS, Bombelli M, Claes L, Durselen L (1994) Biomechanical and histomorphological investigations on a isoelastic prosthesis. J Mater Sci Mater Med 5:384–386CrossRefGoogle Scholar
  34. 34.
    Chang FK, Perez JL (1990) Stiffness and strength tailoring of a hip prosthesis made of advanced composite materials. J Biomed Mater Res 24:873–899CrossRefGoogle Scholar
  35. 35.
    Kuiper JH, Huiskes R (1997) Mathematical optimization elastic properties: application to cementless hip stem design. J Biomech Eng T ASME 119:166–174CrossRefGoogle Scholar
  36. 36.
    De Santis R, Sarracino F, Mollica F, Netti PA, Ambrosio L, Nicolais L (2004) Continuous fiber reinforced polymers as connective tissue replacement. Compos Sci Technol 64:861–878CrossRefGoogle Scholar
  37. 37.
    De Santis R, Mollica F, Ambrosio L, Nicolais L (2005) An experimental and theoretical composite model of the human mandible. J Mater Sci Mater Med 16:1191–1197CrossRefGoogle Scholar
  38. 38.
    Ambrosio L, Netti PA, Iannace S, Huang SJ, Nicolais L (1996) Composite hydrogels for intervertebral disc prostheses. J Mater Sci Mater Med 7:251–254CrossRefGoogle Scholar
  39. 39.
    Ambrosio L, De Santis R, Nicolais L (1998) Composite hydrogels for implants. Proc Inst Mech Eng H 212:93–99Google Scholar
  40. 40.
    Gloria A, Causa F, De Santis R, Netti PA, Ambrosio L (2007) Dynamic-mechanical properties of a novel composite intervertebral disc. J Mater Sci Mater Med 18:2159–2165CrossRefGoogle Scholar
  41. 41.
    Manto L, De Santis R, Carrillo G, Ambrosio G, Ambrosio L, Nicolais L (2005) Novel composite intervertebral disc cage for spine fusion. J Bone Joint Surg Br 87-B:68-aGoogle Scholar
  42. 42.
    Flahiff CM, Blackwell AS, Hollis JM, Feldman DS (1996) Analysis of a biodegradable composite for bone healing. J Biomed Mater Res 32:419–424CrossRefGoogle Scholar
  43. 43.
    Dauner M, Planck H, Caramano L, Missirlis Y, Panagiotopoulos E (1998) Resorbable continuous-fibre reinforce polymers for osteosynthesis. J Mater Sci Mater Med 9:173–179CrossRefGoogle Scholar
  44. 44.
    Causa F, Sarracino F, De Santis R, Netti PA, Ambrosio L, Nicolais L (2006) Basic structural parameters for the design of composite structures as ligament augmentation devices. J Appl Biomater Biomech 4:21–30Google Scholar
  45. 45.
    Roy TD, Simon JL, Ricci JL, Rekow ED, Thompson VP, Russell Parsons J (2003) Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J Biomed Mater Res 66A:283–291CrossRefGoogle Scholar
  46. 46.
    Giordano C, Sanginario V, Ambrosio L, Di Silvio L, Santin M (2006) Chemical–physical characterization and in vitro preliminary biological assessment of hyaluronic acid benzyl ester-hydroxyapatite composite. J Biomater Appl 20:237–253CrossRefGoogle Scholar
  47. 47.
    Schmitt M, Weiss P, Bourges X, Amador Del Valle G, Daculsi G (2002) Crystallization at the polymer/calcium–phosphate interface in a sterilized injectable bone substitute IBS. Biomaterials 23:2789–2794CrossRefGoogle Scholar
  48. 48.
    Navarro M, del Valle S, Martinez S, Zeppetelli S, Ambrosio L, Planell JA, Ginebra MP (2004) New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials 25:4233–4241CrossRefGoogle Scholar
  49. 49.
    Lin FH, Chen TM, Lin CP, Lee CJ (1999) The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Artif Organs 23:186–194CrossRefGoogle Scholar
  50. 50.
    Mikos AG, Herring SW, Ochareon P, Elisseeff J, Lu HH, Kandel R, Schoen FJ, Toner M, Mooney D, Atala A, Van Dyke ME, Kaplan D, Vunjak-Novakovic G (2006) Engineering complex tissues. Tissue Eng 12:3307–3339CrossRefGoogle Scholar
  51. 51.
    Matsumoto T, Mooney DJ (2006) Cell instructive polymers. Adv Biochem Eng Biotechnol 102:113–137Google Scholar
  52. 52.
    Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci Polym Ed 12:107–124CrossRefGoogle Scholar
  53. 53.
    Tabata Y (2005) Significance of release technology in tissue engineering. Drug Discov Today 10:1639–1646CrossRefGoogle Scholar
  54. 54.
    Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–40Google Scholar
  55. 55.
    Sun W, Darling A, Starly B, Nam J (2004) Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem 39:29–47CrossRefGoogle Scholar
  56. 56.
    Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1:910–917CrossRefGoogle Scholar
  57. 57.
    Teo WE, He W, Ramakrishna S (2006) Electrospun scaffold tailored for tissue-specific extracellular matrix. Biotechnol J 1:918–929CrossRefGoogle Scholar
  58. 58.
    Guarino V, Causa F, Ambrosio L (2007) Bioactive scaffolds for bone and ligament tissue. Expert Rev Med Devices 4:405–418CrossRefGoogle Scholar
  59. 59.
    Beniash E, Hartgerink JD, Storrie H, Stendahl JC, Stupp SI (2005) Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomater 1:387–397CrossRefGoogle Scholar
  60. 60.
    Day RM, Boccaccini AR, Maquet V, Shurey S, Forbes A, Gabe SM, Jerome R (2004) In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications. J Mater Sci Mater Med 15:729–734CrossRefGoogle Scholar
  61. 61.
    Ng KW, Hutmacher DW, Schantz JT, Ng CS, Too HP, Lim TC, Phan TT, Teoh SH (2001) Evaluation of ultra-thin poly(epsilon-caprolactone) films for tissue-engineered skin. Tissue Eng 7:441–455CrossRefGoogle Scholar
  62. 62.
    Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100:5413–5418CrossRefGoogle Scholar
  63. 63.
    Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo (poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101:111–125CrossRefGoogle Scholar
  64. 64.
    Paul W, Sharma CP (2004) Ceramic drug delivery: a perspective. J Biomater Appl 17:253–264CrossRefGoogle Scholar
  65. 65.
    LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98CrossRefGoogle Scholar
  66. 66.
    Horn EM, Beaumont M, Shu XZ, Harvey A, Prestwich GD, Horn KM, Gibson AR, Preul MC, Panitch A (2007) Influence of cross-linked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury. J Neurosurg Spine 6:133–140CrossRefGoogle Scholar
  67. 67.
    Duflo S, Thibeault SL, Li W, Shu XZ, Prestwich GD (2006) Vocal fold tissue repair in vivo using a synthetic extracellular matrix. Tissue Eng 12:2171–2180CrossRefGoogle Scholar
  68. 68.
    Brun P, Abatangelo G, Radice M, Zacchi V, Guidolin D, Daga GD, Cortivo R (1999) Chondrocyte aggregation and reorganization into three-dimensional scaffolds. J Biomed Mater Res 46:337–346CrossRefGoogle Scholar
  69. 69.
    Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492CrossRefGoogle Scholar
  70. 70.
    Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233CrossRefGoogle Scholar
  71. 71.
    Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:187–206CrossRefGoogle Scholar
  72. 72.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRefGoogle Scholar
  73. 73.
    Yamane S, Iwasaki N, Kasahara Y, Harada K, Majima T, Monde K, Nishimura S, Minami A (2007) Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res 81:586–593CrossRefGoogle Scholar
  74. 74.
    Rouwkema J, Rivron NC, van Blitterswijk CA (2005) Vascularization in tissue engineering. Trends Biotechnol 26:434–441CrossRefGoogle Scholar
  75. 75.
    Ranucci CS, Kumar A, Batra SP, Moghe PV (2000) Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2-D and 3-D cellular morphogenesis. Biomaterials 21:783–793CrossRefGoogle Scholar
  76. 76.
    Yang S, Leong K, Du Z, Chua C (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7:679–689CrossRefGoogle Scholar
  77. 77.
    Oh SH, Park IK, Kim JM, Lee JH (2007) In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28:1664–1671CrossRefGoogle Scholar
  78. 78.
    Lim SM, Oh SH, Park IK, Lee JH (2007) Investigation of pore size effect on cell compatibility using pore size gradient chitosan scaffold. Key Eng Mater 342:285–288CrossRefGoogle Scholar
  79. 79.
    Beckstead BL, Pana S, Bhrany AD, Bratt-Leal AM, Ratner BD, Giachelli CM (2005) Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Biomaterials 26:6217–6228CrossRefGoogle Scholar
  80. 80.
    Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L, Zhu R (2006) Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 27:4573–4580CrossRefGoogle Scholar
  81. 81.
    Petrie Aronin CE, Sadik KW, Lay AL, Rion DB, Tholpady SS, Ogle RC, Botchwey EA (2009) Comparative effects of scaffold pore size, pore volume, and total void volume on cranial bone healing patterns using microsphere-based scaffolds. J Biomed Mater Res A 89:632–641Google Scholar
  82. 82.
    Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27:5892–5900CrossRefGoogle Scholar
  83. 83.
    Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T (2004) Osteoinduction of porous bioactive titanium metal. Biomaterials 25:443–450CrossRefGoogle Scholar
  84. 84.
    Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734CrossRefGoogle Scholar
  85. 85.
    Yoshikawa H, Myoui A (2005) Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 8:131–136CrossRefGoogle Scholar
  86. 86.
    Savarino L, Baldini N, Greco M, Capitani O, Pinna S, Valentini S, Lombardo B, Esposito MT, Pastore L, Ambrosio L, Battista S, Causa F, Zeppetelli S, Guarino V, Netti PA (2007) The performance of poly-e-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials 28:3101–3109CrossRefGoogle Scholar
  87. 87.
    Montjovent MO, Mark S, Mathieu L, Scaletta C, Scherberich A, Delabarde C, Zambelli PY, Bourban PE, Applegate LA, Pioletti DP (2007) Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Bone 42:554–564CrossRefGoogle Scholar
  88. 88.
    Stokols S, Tuszynski MH (2004) The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25:5839–5846CrossRefGoogle Scholar
  89. 89.
    Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610CrossRefGoogle Scholar
  90. 90.
    Yu TT, Shoichet MS (2005) Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering. Biomaterials 26:1507–1514CrossRefGoogle Scholar
  91. 91.
    Moore MJ, Friedman JA, Lewellyn EB, Mantila SM, Krych AJ, Ameenuddin S, Knight AM, Lu L, Currier BL, Spinner RJ, Marsh RW, Windebank AJ, Yaszemski MJ (2006) Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials 27:419–429CrossRefGoogle Scholar
  92. 92.
    Du C, Moradian-Oldak J (2006) Tooth regeneration: challenges and opportunities for biomedical material research. Biomed Mater 1:R10–R17CrossRefGoogle Scholar
  93. 93.
    Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32:1728–1743CrossRefGoogle Scholar
  94. 94.
    Moore MJ, Jabbari E, Ritman EL, Lu L, Currier BL, Windebank AJ, Yaszemski MJ (2004) Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography. J Biomed Mater Res 71:258–267CrossRefGoogle Scholar
  95. 95.
    Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378CrossRefGoogle Scholar
  96. 96.
    Marshall AJ, Irvin CA, Barker T, Sage EH, Hauch KD, Ratner BD (2004) Biomaterials with tightly controlled pore size that promote vascular in-growth. ACS Polym Prepr 45:100–101Google Scholar
  97. 97.
    Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14:323–330CrossRefGoogle Scholar
  98. 98.
    Hou Q, Grijpma DW, Feijen J (2002) Preparation of porous poly(ε-caprolactone) structures. Macromol Rapid Commun 23:247–252CrossRefGoogle Scholar
  99. 99.
    Gong S, Wang H, Sun Q, Xue S, Wang J (2006) Mechanical properties and in vitro biocompatibility of porous zein scaffolds. Biomaterials 27:3793–3799CrossRefGoogle Scholar
  100. 100.
    Lee SB, Kim YH, Chong MS, Hong SH, Lee YM (2005) Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials 26:1961–1968CrossRefGoogle Scholar
  101. 101.
    Yuan Z, Favis BD (2006) Macroporous poly(l-lactide) of controlled pore size derived from the annealing of co-continuous polystyrene/poly(l-lactide) blends. Biomaterials 25:2161–2170CrossRefGoogle Scholar
  102. 102.
    Barry JJ, Silva MM, Popov VK, Shakesheff KM, Howdle SM (2006) Supercritical carbon dioxide: putting the fizz into biomaterials. Philos Trans R Soc A 364:249–261CrossRefGoogle Scholar
  103. 103.
    Luetzow K, Klein F, Weigel T, Apostel R, Weiss A, Lendlein A (2007) Formation of poly(e-caprolactone) scaffolds loaded with small molecules by integrated processes. J Biomech 40:S80–S88CrossRefGoogle Scholar
  104. 104.
    Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47:8–17CrossRefGoogle Scholar
  105. 105.
    Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486CrossRefGoogle Scholar
  106. 106.
    Guarino V, Causa F, Salerno A, Ambrosio L, Netti PA (2008) Design and manufacture of micro-porous polymeric materials with hierarchal complex structure for biomedical application. Mater Sci Tech Ser 24:1111–1117CrossRefGoogle Scholar
  107. 107.
    Min BM, Lee SW, Lim JN, You Y, Lee TS, Kang PH, Park WH (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45:7137–7142CrossRefGoogle Scholar
  108. 108.
    Jiang H, Zhao P, Zhu K (2007) Fabrication and characterization of zein-based nanofibrous scaffolds by an electrospinning method. Macromol Biosci 7:517–525CrossRefGoogle Scholar
  109. 109.
    Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569CrossRefGoogle Scholar
  110. 110.
    Salerno A, Oliviero M, Di Maio E, Iannace S, Netti PA (2007) Design and preparation of m-bimodal porous scaffold for tissue engineering. J Appl Polym Sci 106:3335–3342CrossRefGoogle Scholar
  111. 111.
    Salerno A, Iannace S, Netti PA (2008) Open-pore biodegradable foams prepared via gas foaming and microparticulate templating. Macromol Biosci 8:655–664CrossRefGoogle Scholar
  112. 112.
    Harris DL, Kim B, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 42:396–402CrossRefGoogle Scholar
  113. 113.
    Guarino V, Causa F, Netti PA, Ciapetti G, Pagani S, Martini D, Baldini N, Ambrosio L (2008) The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration. J Biomed Mater Res A 86:548–557Google Scholar
  114. 114.
    Nam J, Huang Y, Agarwal S, Lannutti J (2007) Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng 13:2249–2257CrossRefGoogle Scholar
  115. 115.
    Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29:2348–2358CrossRefGoogle Scholar
  116. 116.
    Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029–1034CrossRefGoogle Scholar
  117. 117.
    Moroni L, Hendriks JA, Schotel R, de Wijn JR, van Blitterswijk CA (2007) Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications. Tissue Eng 13:361–371CrossRefGoogle Scholar
  118. 118.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  119. 119.
    Whitesides GM, Boncheva M (2002) Supramolecular chemistry and self-assembly special feature: beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 99:4769–4774CrossRefGoogle Scholar
  120. 120.
    Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178CrossRefGoogle Scholar
  121. 121.
    Silva EA, Mooney DJ (2004) Synthetic extracellular matrices for tissue engineering and regeneration. Curr Top Dev Biol 64:181–205CrossRefGoogle Scholar
  122. 122.
    Leach JK (2006) Multifunctional cell-instructive materials for tissue regeneration. Regen Med 1:447–455CrossRefGoogle Scholar
  123. 123.
    Boontheekul T, Mooney DJ (2003) Protein-based signaling systems in tissue engineering. Curr Opin Biotechnol 14:559–565CrossRefGoogle Scholar
  124. 124.
    Saltzman WM, Olbricht WL (2002) Building drug delivery into tissue engineering. Nat Rev Drug Discov 1:177–186CrossRefGoogle Scholar
  125. 125.
    Chen RR, Silva EA, Yuen WW, Mooney DJ (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24:258–264CrossRefGoogle Scholar
  126. 126.
    Suciati T, Howard D, Barry J, Everitt NM, Shakesheff KM, Rose FR (2006) Zonal release of proteins within tissue engineering scaffolds. J Mater Sci Mater Med 17:1049–1056CrossRefGoogle Scholar
  127. 127.
    Ungaro F, Biondi M, Indolfi L, De Rosa G, La Rotonda MI, Quaglia F, Netti PA (2005) Bioactivated polymer scaffolds for tissue engineering. In: Ashammakai N, Rice RL, Sun W (eds) Topics in tissue engineering.
  128. 128.
    Ungaro F, Biondi M, D’Angelo I, Indolfi L, Quaglia F, Netti PA, La Rotonda MI (2006) Microsphere-integrated collagen scaffolds for tissue engineering: effect of microsphere formulation and scaffold properties on protein release kinetics. J Control Release 113:128–136CrossRefGoogle Scholar
  129. 129.
    Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373CrossRefGoogle Scholar
  130. 130.
    Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362CrossRefGoogle Scholar
  131. 131.
    Hung AM, Stupp SI (2007) Simultaneous self-assembly, orientation, and patterning of peptide-amphiphile nanofibers by soft lithography. Nano Lett 7:1165–1171CrossRefGoogle Scholar
  132. 132.
    Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, Fairbrother DH, Cascio B, Elisseeff JH (2007) Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat Mater 6:385–392CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Material and Production Engineering (DIMP) and Interdisciplinary Research Centre on Biomaterials (CRIB)University of Naples Federico IINaplesItaly
  2. 2.Institute of Composite and Biomedical Materials (IMCB-CNR), National Council of ResearchNaplesItaly

Personalised recommendations