Deligne-Lusztig Induction

  • Cédric BonnaféEmail author
Part of the Algebra and Applications book series (AA, volume 13)


We will use the action of G×μ q+1 on Y to construct a morphism between the Grothendieck groups \({{\mathcal{K}}_{0}}(K\mu_{q+1})\) and \({{\mathcal{K}}_{0}}(KG)\). To this end, from now on we will view the monoid μ q+1⋊〈Fmon as acting on the right on the Drinfeld curve Y. It follows that the cohomology groups \(H_{c}^{i}({\mathbf{Y}})\) inherit the structure of (KG,K(μ q+1⋊〈Fmon)-bimodules. We will systematically use the results of Appendix A (which are referenced as A.?.!).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Institut de Mathématiques et de Modélisation de MontpellierCNRS (UMR 5149), Université Montpellier 2Montpellier CedexFrance

Personalised recommendations