Membrane-Assisted Catalytic Cracking of Hydrogen Sulphide (H2S)

  • Jan Galuszka
  • Gaetano Iaquaniello
  • Paolo Ciambelli
  • Vincenzo Palma
  • Elvirosa Brancaccio


Hydrogen sulphide (H2S) has potentially high economic value if converted to sulphur and hydrogen. Various technical approaches to achieving this goal are reviewed. Thermal/catalytic decomposition of H2S to hydrogen and sulphur is a long-time candidate for an application of membrane reactor. Open reactor architecture (OA) is presented, where the coupling of reaction and hydrogen separation are achieved in the series of the consecutive conventional catalytic reactors (CRs), each followed by a membrane separator (MS). The number of the CR/MS units is determined by the required feed conversion. Such membrane-assisted reaction architecture simplifies the design, allowing the hydrogen separator made of silica membranes to perform at its optimal temperature of 600°C, while the catalytic H2S cracking proceeds in the CR at about 900°C. The theoretical calculations for one CR/MS/CR unit predicted an overall one-pass H2S conversion close to 40% at ambient pressure. It is proposed to supply the required process heat by inserting CR tubes inside the conventional Claus reactor where the unconverted H2S feed is disposed. This configuration radically improves the commercial outlook for H2S decomposition technology and allows hydrogen production without CO2 emissions.


Hydrogen Production Membrane Separator Membrane Reactor Hydrogen Sulphide Pressure Swing Adsorber 



We wish to acknowledge the financial support provided by the Canadian Federal Government Program on ecoEnergy Technology Initiative, and by Tecnimont KT S.p.A. The participation of Mr. Terry Giddings of CanmetENERGY in Ottawa, Canada, is also appreciated.


  1. 1.
    Cox BG, Clarke PF, Pruden BB (1988) Economics of thermal dissociation of H2S to produce hydrogen. Int J Hydrogen Energy 23:531–544CrossRefGoogle Scholar
  2. 2.
    CAPP Report (2007) Oil sands: benefits to Alberta and Canada, today and tomorrow, through a fair, stable and competitive fiscal regimeGoogle Scholar
  3. 3.
    Raymont MED (1974) Hydrogen sulfide thermal decomposition. Ph.D. Thesis, University of Calgary, Calgary, AB, CanadaGoogle Scholar
  4. 4.
    Kaloidas VE, Papayannakos NG (1989) Kinetics of thermal non-catalytic decomposition of hydrogen sulphide. Chem Eng Sci 44(11):2493–2500CrossRefGoogle Scholar
  5. 5.
    Fletcher EA, Noring JE, Murray JP (1984) Hydrogen sulfide as a source of hydrogen. Int J Hydrogen Energy 9(7):587–593CrossRefGoogle Scholar
  6. 6.
    Noring JE, Fletcher EA (1982) High temperature solar thermochemical processing––hydrogen and sulfur from hydrogen sulfide. Energy 7(8):651–666CrossRefGoogle Scholar
  7. 7.
    Yang BL, Kung HH (1994) Hydrogen recovery from hydrogen sulfide by oxidation and by decomposition. Ind Eng Chem Res 33(5):1090–1097CrossRefGoogle Scholar
  8. 8.
    Chivers T, Hyne JB, Lau C (1980) The thermal decomposition of hydrogen sulfide over transition metal sulfides. Int J Hydrogen Energy 5(5):499–506CrossRefGoogle Scholar
  9. 9.
    Gregory TD, Feke DL, Angus JC, Brosilow CB, Landau U (1980) Electrolysis of liquid hydrogen sulphide. J Applied Electrochemistry 10(3):405–408CrossRefGoogle Scholar
  10. 10.
    Al-Shamma LM, Naman SA (1990) The production and separation of hydrogen and sulfur from thermal decomposition of hydrogen sulphide over vanadium oxide/sulphide catalysts. Int J Hydrogen Energy 15(l):l–l5Google Scholar
  11. 11.
    Luinstra EA (1995) Hydrogen from H2S: technologies and economics. Sulfotech Research, CAGoogle Scholar
  12. 12.
    Raymont MED (1975) Make hydrogen from hydrogen sulphide. Hydrocarb Process 54:139–142Google Scholar
  13. 13.
    Chivers T, Lau C (1985) The thermal decomposition of hydrogen sulfide over alkali metal sulfides and polysulfides. Int J Hydrogen Energy 10(1):21–25CrossRefGoogle Scholar
  14. 14.
    Plummer MA (1994) Process for recovering sulfur and hydrogen from hydrogen sulfide. U.S. Patent 5,334,363Google Scholar
  15. 15.
    Plummer Mark A, Cowle Scott W (2006) Chemical mechanisms in hydrogen sulfide decomposition to hydrogen and sulfur. Mol Simul 32(2):101–108CrossRefGoogle Scholar
  16. 16.
    Borgarello E, Kalyanasundaram K, Gratzel M Pelizzetti E (1982) Visible light Induced generation of hydrogen from H2S in CdS-dispersions, Hole transfer catalysis by RuO2. Helv Chim Acta 65:243–248CrossRefGoogle Scholar
  17. 17.
    Borgarello E, Serpone N, Gratzel M, Pelizzetti E (1986) Photodecomposition of H2S in aqueous alkaline media catalyzed by RuO2-loaded alumina in the presence of cadmium sulfide. Application of the inter-particle electron transfer mechanism. Inorg Chim Acta 112(2):197CrossRefGoogle Scholar
  18. 18.
    Kalyanasundaram K, Borgarello E, Gratzel M (1981) Visible light induced water cleavage in CdS dispersions loaded with Pt and RuO2 hole scavenging by RuO2. Helv Chim Acta 64:362–366CrossRefGoogle Scholar
  19. 19.
    Kazuyuki T, Hideyuki T, Takatoshi M (2007) Materia 46(3):162–165Google Scholar
  20. 20.
    Huang CP, Linkous CA (2007) UV photochemical option for closed cycle decomposition of hydrogen sulfide. US patent 7220390B1Google Scholar
  21. 21.
    Linkous CA, Huang CJ, Fowler R (2004) UV photochemical oxidation of aqueous sodium sulfide to produce hydrogen and sulphur. J Photochem Photobiol A 168:153–160CrossRefGoogle Scholar
  22. 22.
    Ma G, Yan H, Shi J, Zong X, Lei Z, Li C (2008) Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation. J Catal 260:134–140CrossRefGoogle Scholar
  23. 23.
    Zhang L, Wang Y, Bai X (2008) Photocatalytic decomposition of hydrogen sulfide to produce hydrogen over CdS/ZnO composite photocatalysts. Huaxue Yu Nianhe 30(6):5–8, 12MathSciNetGoogle Scholar
  24. 24.
    Xu H, Fu X, Bai X (2008) UV light catalytic decomposition of hydrogen sulfide to produce hydrogen. Huaxue Yu Nianhe 30(4):9–12Google Scholar
  25. 25.
    Argyle MD, Ackerman JF, Muknahallipatna S, Hamann JC, Legowski S, Zhang J, Zhao G, Alcanzare RJ, Wang L, Plumb OA (2004) Novel composite hydrogen-permeable membranes for non-thermal plasma reactors for the decomposition of hydrogen sulfide. DE-FC26-03NT41963Google Scholar
  26. 26.
    Thomas JR (1997) Particle size effect in microwave-enhanced catalysis. Catal Lett 49:137CrossRefGoogle Scholar
  27. 27.
    Subrahmanyam CH, Renken A, Kiwi-Minsker L (2008) Non-thermal plasma catalytic reactor for hydrogen production by direct decomposition of H2S. Optoelectro Nanomater 10(8):1991–1993Google Scholar
  28. 28.
    Bolmer PW (1966) US Patent 3,249,522Google Scholar
  29. 29.
    Bolmer PW (1968) US Patent 3,409,520Google Scholar
  30. 30.
    Johnson GC (1966) US Patent 3,266,941Google Scholar
  31. 31.
    Kalina DW, Mass ET Jr (1985) Indirect hydrogen sulfide conversion-I. An acidic electrochemical process. Int J Hydrogen Energy 10(3):157–162CrossRefGoogle Scholar
  32. 32.
    Mizuta S, Kondo W, Fujii K, Iida H, Isshiki S, Noguchi H, Kikuchi T, Sue H, Sakai K (1991) Hydrogen production from hydrogen sulfide by the Fe–Cl hybrid process. Ind Eng Chem Res 30:1601–1608CrossRefGoogle Scholar
  33. 33.
    Mbah J, Krakow B, Stefanakos E, Wolan J (2008) Electrolytic splitting of H2S using CsHSO4 membrane. J Electrochem Soc 155(11):E166–E170CrossRefGoogle Scholar
  34. 34.
    Edlund DJ, Frost CB, Pledger JR, Reynolds TA, Babcock WC (1995) A catalytic membrane reactor for facilitating the water-gas-shift reaction at high temperatures—phase II. Final Report to the U.S. Department of Energy on Contract No. DE-FG03-91-ER81229, Bend Research Inc., Bend, OregonGoogle Scholar
  35. 35.
    Edlun D (1996) A membrane reactor for H2S decomposition. DOE/ER/81419-97/C0749Google Scholar
  36. 36.
    Zaman J, Chakma A (1995) A simulation study on the thermal decomposition of hydrogen sulphide in a membrane reactor. Int J Hydrogen Energy 20(1):21–28CrossRefGoogle Scholar
  37. 37.
    Morreale BD, Ciocco MV, Howard BH, Killmeyer RP, Cugini AV, Enick RM (2004) Effect of hydrogen-sulfide on the hydrogen permeance of palladium-copper alloys at elevated temperatures. J Membr Sci 241:219–224CrossRefGoogle Scholar
  38. 38.
    Osemwengie UI, Morreale BM, Killmeyer RP, Enick RM, Howard BH (2006) Performance of Pd-alloy membranes for hydrogen separation from mixed feed streams containing 1000 ppm H2S. Abstract, AIChE 2006 Spring National Meeting, OrlandoGoogle Scholar
  39. 39.
    Pomerantz N, Ma YH (2007) Effect of H2S poisoning of Pd/Cu membranes on H2 permeance and membrane morphology. Am Chem Soc DC Coden: 69JNR2 Conference. AN 2007:882084Google Scholar
  40. 40.
    Howard B, Rothenberger K, Killmeyer R, Enik R, Cugini A (2003) The hydrogen permeability and sulphur resistance of palladium-copper alloys at elevated temperature and pressure. Mater Res Soc Symp Proc 752:277–282Google Scholar
  41. 41.
    Aboud S, Ozdogan E, Wilcox J (2009) Ab initio studies of palladium-niobium alloys for hydrogen separation. Abstracts of Papers, 237th ACS national meeting, Salt Lake City, UT, USA, 22–26 March 2009Google Scholar
  42. 42.
    Koros WJ, Fleming GK (1993) Membrane-based gas separation. J Membr Sci 83:1–80CrossRefGoogle Scholar
  43. 43.
    Freeman BD, Pinnau I (2004) Gas and liquid separations using membranes: an overview. In: Pinnau I, Freeman BD (eds) Advanced materials for membrane separations. ACS symposium series 876, American Chemical Society, Washington, DC, pp 1–21Google Scholar
  44. 44.
    Roa F, Way JD (2003) Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladium copper membranes. Ind Eng Chem Res 42:5827–5835CrossRefGoogle Scholar
  45. 45.
    Lee D, Zhang L, Oyamaa ST, Niuc S, Saraf RF (2004) Synthesis, characterization, and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina. J Membr Sci 231:117–126CrossRefGoogle Scholar
  46. 46.
    Trujillo FJ, Hardiman KM, Adesina AA (2008) Catalytic decomposition of H2S in a double-pipe packed bed membrane reactor: numerical simulation studies. Chem Eng J 143:273–281CrossRefGoogle Scholar
  47. 47.
    Dokiya M, Kameyama T, Fukuda K (1978) Jpn Patent 78,130,291Google Scholar
  48. 48.
    Toyobo Co. Ltd (1980) Jpn Patent 80,119,439Google Scholar
  49. 49.
    Abe F (1987) Eur Pat Appl 228, 885Google Scholar
  50. 50.
    Gavalas GR, Megiris CE (1990) Synthesis of SiO2 membrane on porous support and method of the same. US Patent 4902307Google Scholar
  51. 51.
    Peachey NM, Dye RC, Show RC, Birdsell SA (1998) Composite metal membrane. US Patent 5738708Google Scholar
  52. 52.
    Blach Vizoso R (2002) Catalytic membrane reactor that is used for the decomposition of hydrogen sulphide into hydrogen and sulphur and the separation of the products of said decomposition. US Patent 2004141910 (a1)Google Scholar
  53. 53.
    Agarwal PK, Ackerman J (2006) Membrane for hydrogen recovery from streams containing hydrogen sulfide, University of Wyoming, USA. US Patent Application Publication 5 ppGoogle Scholar
  54. 54.
    Nishizawa T, Tanaka Y, Hirota K (1979) Decomposition of hydrogen sulfide and enrichment of hydrogen produced by use of thermal diffusion columns. Int Chem Eng 19:517Google Scholar
  55. 55.
    Chivers T, Lau C (1987) The use of thermal diffusion columns reactors for the production of hydrogen and sulfur from the thermal decomposition of hydrogen sulfide over transition metal sulfides. Int J Hydrogen Energy 12(8):561–569CrossRefGoogle Scholar
  56. 56.
    Hirota K (1977) Thermal decomposition of hydrogen sulfide in gas mixtures. Japan. Kokai 17(52):173Google Scholar
  57. 57.
    Chivers T, Lau C (1987) The thermal decomposition of hydrogen sulfide over vanadium and molybdenum sulfides and mixed sulfide catalysts in quartz and thermal diffusion column reactors. Int J Hydrogen Energy 12(4): 235–243CrossRefGoogle Scholar
  58. 58.
    Faraji F, Safarika I, Strausz OP, Yildirimb E, Torresc ME (1998) The direct conversion of hydrogen sulfide to hydrogen and sulfur. Int J Hydrogen Energy 23:451–456CrossRefGoogle Scholar
  59. 59.
    Dowling NI, Hyne JB, Brown DM (1990) Kinetics of the reaction between hydrogen and sulfur under high-temperature Claus furnace conditions. Ind Eng Chem Res 29(12):2327CrossRefGoogle Scholar
  60. 60.
    Darwent de B, Roberts R (1953) Proc Roy Soc (Lond) A 216: 344Google Scholar
  61. 61.
    Hawboldt KA, Monnery WD, Svrcek WY (2000) New experimental data and kinetic rate expression for H2S pyrolysis and re-association. Chem Eng Sci 55:957–966CrossRefGoogle Scholar
  62. 62.
    Fukuda K, Doklya M, Kameyama T, Kotera Y (1978) Catalytic decomposition of hydrogen sulfide. Ind Eng Chem Fundam 17:4CrossRefGoogle Scholar
  63. 63.
    Kaloidas VE, Papayannakos NG (1991) Kinetic studies on the catalytic decomposition of hydrogen sulfide in a tubular reactor. Ind Eng Chem Res 30(2):345CrossRefGoogle Scholar
  64. 64.
    Monnery WD, Hawboldt KA, Pollock A, Svrcek WY (2000) New experimental data and kinetic rate expression for H2S pyrolysis and re-association. Chem Eng Sci 55:957–966CrossRefGoogle Scholar
  65. 65.
    Kappauf T, Fletcher EA (1989) Hydrogen and sulfur from hydrogen sulfide VI. Solar thermolysis. Energy 14:443–449CrossRefGoogle Scholar
  66. 66.
    Steinfeld A (2005) Solar thermochemical production of hydrogen: a review. J Solar Energy 78:603–615CrossRefGoogle Scholar
  67. 67.
    Zhaoa G, Sanil J, Zhanga J, Hamannb JC, Muknahallipatnab SS, Legowskib S, Ackermana JF, Argylea MD (2007) Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor. Chem Eng Sci 62:2216CrossRefGoogle Scholar
  68. 68.
    Roussy G, Pearce JA (1995) Foundations and industrial applications of microwaves and radio frequency fields. Wiley, New YorkGoogle Scholar
  69. 69.
    Zhang X, Hayward DO (2006) Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic system. Inorg Chim Acta 359:3421–3433CrossRefGoogle Scholar
  70. 70.
    Zhang X, Hayward DO, Mingos MP (1999) Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating. Chem Commun 975–976Google Scholar
  71. 71.
    Kaloidas VE, Papayannakas NG (1987) Int J Hydrogen Energy 12:403CrossRefGoogle Scholar
  72. 72.
    Galuszka J, Giddings T (2011) Silica membranes-preparation by chemical vapour deposition and characteristics. In: Basile A, Gallucci F (eds) Membranes for membrane reactors: preparation, optimization and selection, Chap 12. Wiley, New York (in press)Google Scholar
  73. 73.
    Kameyama T, Dokiya M, Fujishige M, Yokokawa H, Fukuda K (1981) Possibility for effective production of hydrogen from hydrogen sulphide by means of a porous vycor glass membrane. Ind Eng Chem Fundam 20:97–99CrossRefGoogle Scholar
  74. 74.
    Kameyama T, Dokiya M, Fujishige M, Yokokawa H, Fukuda K (1983) Production of hydrogen from hydrogen sulphide by means of selective diffusion membranes. Int J Hydrogen Energy 8:5–13CrossRefGoogle Scholar
  75. 75.
    Ohashi H, Ohya H, Aihara M, Negeshi Y, Semenova SI (1998) Hydrogen production from hydrogen sulphide using membrane reactor integrated with porous membrane having thermal and corrosion resistance. J Membr Sci 146:39–52CrossRefGoogle Scholar
  76. 76.
    Vizoso RB (2004) Catalytic membrane reactor for breaking down hydrogen sulphide into hydrogen and sulfur and separating the products of this breakdown. US Patent Application, US2004/0141910 A1Google Scholar
  77. 77.
    Akamatsu K, Nakane M, Sugawara T, Hattori T, Nakao S (2008) Development of a membrane reactor for decomposing hydrogen sulphide into hydrogen using a high-performance amorphous silica membrane. J Membr Sci 325:16–19CrossRefGoogle Scholar
  78. 78.
    Edlund DJ, Friesen DT (1993) Hydrogen-permeable composite metal membrane and uses thereof. US Patent 5,217,5006Google Scholar
  79. 79.
    Edlund DJ, Pledger WA (1993) Thermolysis of hydrogen sulfide in a metal-membrane reactor. J Membr Sci 77:255–264CrossRefGoogle Scholar
  80. 80.
    Edlund DJ, Pledger WA (1994) Catalytic platinum-platinum based membrane reactor for removal of H2S from natural gas stream. J Membr Sci 94:111–119CrossRefGoogle Scholar
  81. 81.
    Bartholomew CH, Agrawal PK, Katzer JR (1982) In: Eley DD, Pines H, Weisz PB (eds) Sulfur poisoning of metals, vol 31. Advances in Catalysis Academic, New York, pp 135–241Google Scholar
  82. 82.
    Kotera Y (1976) The thermochemical hydrogen program at N.C.L.I. Int J Hydrogen Energy 1:219–220CrossRefGoogle Scholar
  83. 83.
    Zazhigalov VA, Gerei SV, Rubanik MYa (1975) Relationship in the catalytic reaction between hydrogen and sulfur in the presence of metal sulphide I. Kinet Katal 16(4):967–974Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Jan Galuszka
    • 1
  • Gaetano Iaquaniello
    • 2
  • Paolo Ciambelli
    • 3
  • Vincenzo Palma
    • 4
  • Elvirosa Brancaccio
  1. 1.Natural Resources CanadaCanmetENERGYOttawaCanada
  2. 2.Tecnimont KT S.p.ARomeItaly
  3. 3.Department of Chemical and Food EngineeringUniversity of SalernoFiscianoItaly
  4. 4.Processi Innovativi S.r.l.L’AquilaItaly

Personalised recommendations