Technical and Economical Evaluation of WGSR

  • Paolo Ciambelli
  • Vincenzo Palma
  • Emma Palo
  • Jan Galuszka
  • Terry Giddings
  • Gaetano Iaquaniello


The catalytic conversion of CO through the water–gas shift reaction (WGSR) is of great importance in many of today’s chemical industries, such as ammonia and methanol synthesis. One of the emerging new applications of the WGSR is pertinent to membrane-assisted Integrated Gasification Combined Cycle (IGCC) for clean energy or clean hydrogen production with zero CO2 emissions. The use of membrane reactors offers a significant advantage by lowering process intensity and reducing the cost of CO2 capture. The integration of IGCC with membrane technology could be realized either as an open architecture (OA) where hydrogen separation ceramic modules are located before and after the WGSR or as an integral WGSR membrane reactor (closed architecture (CA)) where reaction and separation happen in a single step. The first part discusses mathematical modelling of this more complex, but perhaps more efficient, integral WGSR membrane reactor. A techno-economic analysis comparing the conventional technology with membrane-assisted WGSR developed around OA, considered the first step towards commercial realization, is discussed in the second part of this chapter.


Membrane Reactor Open Architecture Integrate Gasification Combine Cycle Silica Membrane Conventional Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Burns DT, Piccardi G, Sabbatini L (2008) Some people and places important in the history of analytical chemistry in Italy. Microchim Acta 160:57–87CrossRefGoogle Scholar
  2. 2.
    Mond L, Langer C (1888) Improvements in obtaining hydrogen. British Patent 12608Google Scholar
  3. 3.
    Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107:3952–3991CrossRefGoogle Scholar
  4. 4.
    Lei Y, Cant NW, Trimm DL (2005) Activity patterns for the water gas shift reaction over supported precious metal catalysts. Catal Lett 103:133–136CrossRefGoogle Scholar
  5. 5.
    Lei Y, Cant NW, Trimm DL (2005) Kinetics of the water–gas shift reaction over a rhodium-promoted iron–chromium oxide catalyst. Chem Eng J 114:81–85CrossRefGoogle Scholar
  6. 6.
    Lei Y, Cant NW, Trimm DL (2006) The origin of rhodium promotion of Fe3O4–Cr2O3 catalysts for the high-temperature water–gas shift reaction. J Catal 239:227–236CrossRefGoogle Scholar
  7. 7.
    Rhodes C, Williams BP, King F, Hutchings GJ (2002) Promotion of Fe3O4/Cr2O3 high temperature water gas shift catalyst. Catal Commun 3:381–384CrossRefGoogle Scholar
  8. 8.
    Natesakhawat S, Wang X, Zhang L, Ozkan US (2006) Development of chromium-free iron-based catalysts for high-temperature water-gas shift reaction. J Mol Catal A Chem 260:82–94CrossRefGoogle Scholar
  9. 9.
    Martos C, Dufour J, Ruiz A (2009) Synthesis of Fe3O4-based catalysts for the high-temperature water gas shift reaction. Int J Hydrogen Energy 34:4475–4481CrossRefGoogle Scholar
  10. 10.
    Maroño M, Ruiz E, Sánchez JM, Martos C, Dufour J, Ruiz A (2009) Performance of Fe–Cr based WGS catalysts prepared by co-precipitation and oxi-precipitation methods. Int J Hydrogen Energy 34:8921–8928CrossRefGoogle Scholar
  11. 11.
    Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takeira K (2008) Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water–gas shift reaction. Catalyst preparation by adopting “memory effect” of hydrotalcite. Appl Catal A 337:48–57CrossRefGoogle Scholar
  12. 12.
    Guo P, Chen L, Yang Q, Qiao M, Li H, Li H, Xu H, Fan K (2009) Cu/ZnO/Al2O3 water–gas shift catalysts for practical fuel cell applications: the performance in shut-down/start-up operation. Int J Hydrogen Energy 34:2361–2368CrossRefGoogle Scholar
  13. 13.
    Tang X-J, Fei J-H, Hou Z-Y, Lou H, Zheng X-M (2008) Copper-zinc oxide and manganese promoted copper-zinc oxide as highly active catalysts for water–gas shift reaction. React Kinet Catal Lett 94:3–9CrossRefGoogle Scholar
  14. 14.
    Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Appl Catal B 27:179–191CrossRefGoogle Scholar
  15. 15.
    Djinović P, Batista J, Pintar A (2008) Calcination temperature and CuO loading dependence on CuO–CeO2 catalyst activity for water-gas shift reaction. Appl Catal A 347:23–33CrossRefGoogle Scholar
  16. 16.
    Djinović P, Levec J, Pintar A (2008) Effect of structural and acidity/basicity changes of CuO–CeO2 catalysts on their activity for water–gas shift reaction. Catal Today 138:222–227CrossRefGoogle Scholar
  17. 17.
    Djinović P, Batista J, Levec J, Pintar A (2009) Comparison of water–gas shift reaction activity and long-term stability of nanostructured CuO–CeO2 catalysts prepared by hard template and co-precipitation methods. Appl Catal A 364:156–165CrossRefGoogle Scholar
  18. 18.
    Djinović P, Batista J, Pintar A (2009) WGS reaction over nanostructured CuO–CeO2 catalysts prepared by hard template method: characterization, activity and deactivation. Catal Today 147S:S191–197CrossRefGoogle Scholar
  19. 19.
    Wheeler C, Jhalani A, Klein EJ, Tummala S, Schmidt LD (2004) The water–gas-shift reaction at short contact times. J Catal 223:191CrossRefGoogle Scholar
  20. 20.
    Radhakrishnan R, Willigan RR, Dardas Z, Vanderspurt TH (2006) Water gas shift activity and kinetics of Pt/Re catalysts supported on ceria-zirconia oxides. Appl Catal B 66:23–28CrossRefGoogle Scholar
  21. 21.
    Jacobs G, Ricote S, Davis BH (2006) Low temperature water-gas shift: type and loading of metal impacts decomposition and hydrogen exchange rates of pseudo-stabilized formate over metal/ceria catalysts. Appl Catal A 302:14–21CrossRefGoogle Scholar
  22. 22.
    Panagiotopoulou P, Papavasiliou J, Avgouropoulos G, Ioannides T, Kondarides DI (2007) Water–gas shift activity of doped Pt/CeO2 catalysts. Chem Eng J 134:16–22CrossRefGoogle Scholar
  23. 23.
    Kim YT, Park ED, Lee HC, Lee D, Lee KH (2009) Water–gas shift reaction over supported Pt-CeOx catalysts. Appl Catal B 90:45–54CrossRefGoogle Scholar
  24. 24.
    Lim S, Bae J, Kim K (2009) Study of activity and effectiveness factor of noble metal catalysts for water–gas shift reaction. Int J Hydrogen Energy 34:870–876CrossRefGoogle Scholar
  25. 25.
    Ciambelli P, Palma V, Palo E, Iaquaniello G (2009) Experimental and economical approach to the integration of a kW-scale CH4-ATR reactor with a WGS stage. Chem Eng Trans 18:499–504Google Scholar
  26. 26.
    Duarte de Farias AM, Nguyen-Thanh D, Fraga MA (2010) Discussing the use of modified ceria as support for Pt catalysts on water–gas shift reaction. Appl Catal B 93:250–258CrossRefGoogle Scholar
  27. 27.
    González ID, Navarro RM, Wen W, Marinkovic N, Rodriguéz JA, Rosa F, Fierro JLG (2010) A comparative study of the water gas shift reaction over platinum catalysts supported on CeO2, TiO2 and Ce-modified TiO2. Catal Today 149:372–379CrossRefGoogle Scholar
  28. 28.
    Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Nanostructured Au–CeO2 catalysts for low-temperature water–gas shift. Catal Lett 77:87–95CrossRefGoogle Scholar
  29. 29.
    Fu Q, Kudriavtseva S, Saltsburg H, Flytzani-Stephanopoluos M (2003) Gold-ceria catalysts for low-temperature water–gas shift reaction. Chem Eng J 93:41–53CrossRefGoogle Scholar
  30. 30.
    Burch R (2006) Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. Phys Chem Chem Phys 8:5483–5500CrossRefGoogle Scholar
  31. 31.
    Andreeva D, Ivanov I, Ilieva L, Sobczak JW, Avdeev G, Petrov K (2007) Gold based catalysts on ceria and ceria-alumina for WGS reaction (WGS Gold catalysts). Top Catal 44:173–182CrossRefGoogle Scholar
  32. 32.
    Sandoval A, Gómez-Cortés A, Zanella R, Díaz G, Saniger JM (2007) Gold nanoparticles: support effects for the WGS reaction. J Mol Catal A 278:200–208CrossRefGoogle Scholar
  33. 33.
    Fonseca AA, Fisher JM, Ozkaya D, Shannon MD, Thompsett D (2007) Ceria-zirconia supported Au as highly active low temperature water–gas shift catalysts. Top Catal 44:223–235CrossRefGoogle Scholar
  34. 34.
    Bond G (2009) Mechanisms of the gold-catalysed water-gas shift. Gold Bull 42:337–342CrossRefGoogle Scholar
  35. 35.
    Personal Communications with Elcogas-MRP-Cosero, October (2006)Google Scholar
  36. 36.
    Bracht M, Alderliesten PT, Kloster R, Pruschek R, Haupt G, Xue E, Ross JRH, Koukou MK, Papayannakos N (1996) Water gas shift membrane reactor for CO2 control in IGCC systems: techno-economic feasibility study. Energy Convers 38:S159–164CrossRefGoogle Scholar
  37. 37.
    Chiesa P, Kreutz TG, Lozza GG (2007) CO2 sequestration from IGCC power plants by means of metallic membranes. J Eng Gas Turbines Power 129:123–134CrossRefGoogle Scholar
  38. 38.
    De Lorenzo L, Kreutz TG, Chiesa P, Williams RH (2008) Carbon-free hydrogen and electricity from coal: options for syngas cooling in systems using a hydrogen separation membrane reactor. J Eng Gas Turbines Power 130:031401-1Google Scholar
  39. 39.
    Diniz da Costa JC, Reed GP, Thambimuthu K (2009) High temperature gas separation membranes in coal gasification. Energy Procedia 1:295–302CrossRefGoogle Scholar
  40. 40.
    Manzolini G, Viganò F (2009) Co-production of hydrogen and electricity from autothermal reforming of natural gas by means of Pd-Ag membranes. Energy Procedia 1:319–326CrossRefGoogle Scholar
  41. 41.
    Rezvani S, Huang Y, McIlveen-Wright D, Hewitt N, Mondol JD (2009) Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping. Fuel 88:2463–2472CrossRefGoogle Scholar
  42. 42.
    Jansen D, Dijkstra JW, van den Brink RW, Peters TA, Stange M, Bredesen R, Goldbach A, Xu HY, Gottschalk A, Doukelis A (2009) Hydrogen membrane reactors for CO2 capture. Energy Procedia 1:253–260CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Doong SJ, Lau F, Roberts M, Ong E (2005) GTI’s solid fuel gasification to hydrogen program. In: The 3rd natural gas technology conference, Orlando, FLGoogle Scholar
  45. 45.
    Bredesen R, Jordal K, Bolland O (2004) High-temperature membranes in power generation with CO2 capture. Chem Eng Process 43:1129–1158CrossRefGoogle Scholar
  46. 46.
    Basile A, Drioli E, Santella F, Violante V, Capannelli G, Vitulli G (1995) A study on catalytic membrane reactors for water gas shift reaction. Gas Sep Purif 10:53–61CrossRefGoogle Scholar
  47. 47.
    Basile A, Criscuoli A, Santella F, Drioli E (1996) Membrane reactor for water gas shift reaction. Gas Sep Purif 10:243–254CrossRefGoogle Scholar
  48. 48.
    Criscuoli A, Basile A, Drioli E (2000) An analysis of the performance of membrane reactors for the water–gas shift reaction using gas feed mixtures. Catal Today 56:53–64CrossRefGoogle Scholar
  49. 49.
    Basile A, Chiappetta G, Tosti S, Violante V (2001) Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor. Sep Purif Technol 25:549–571CrossRefGoogle Scholar
  50. 50.
    Iyoha O, Enick R, Killmeyer R, Howard B, Morreale B, Ciocco M (2007) Wall-catalyzed water-gas shift reaction in multi-tubular Pd and 80 wt% Pd–20 wt% Cu membrane reactors at 1173 K. J Membr Sci 298:14–23CrossRefGoogle Scholar
  51. 51.
    Iyoha O, Enick R, Killmeyer R, Howard B, Ciocco M, Morreale B (2007) H2 production from simulated coal syngas containing H2S in multi-tubular Pd and 80 wt% Pd–20 wt% Cu membrane reactors at 1173 K. J Membr Sci 306:103–115CrossRefGoogle Scholar
  52. 52.
    Barbieri G, Brunetti A, Tricoli G, Drioli E (2008) An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen. Experimental analysis of water gas shift. J Power Sources 182:160–167CrossRefGoogle Scholar
  53. 53.
    Bi Y, Xu H, Li W, Goldbach A (2009) Water–gas shift reaction in a Pd membrane reactor over Pt/Ce0.6Zr0.4O2 catalyst. Int J Hydrogen Energy 34:2965–2971CrossRefGoogle Scholar
  54. 54.
    Brunetti A, Barbieri G, Drioli E (2009) Upgrading of a syngas mixture for pure hydrogen production in a Pd–Ag membrane reactor. Chem Eng Sci 64:3448–3454CrossRefGoogle Scholar
  55. 55.
    Brunetti A, Barbieri G, Drioli E (2009) Pd-based membrane reactor for syngas upgrading. Energy Fuels 23:5073–5076CrossRefGoogle Scholar
  56. 56.
    Brunetti A, Barbieri G, Drioli E, Granato T, Lee K-H (2007) A porous stainless steel supported silica membrane for WGS reaction in a catalytic membrane reactor. Chem Eng Sci 62:5621–5626CrossRefGoogle Scholar
  57. 57.
    Giessler S, Jordan K, Diniz da Costa JC, Lu GQ(M) (2003) Performance of hydrophobic and hydrophilic silica membrane reactors for the water gas shift reaction. Sep Purif Technol 33:255–264Google Scholar
  58. 58.
    Battersby S, Duke MC, Liu S, Rudolph V, Diniz da Costa JC (2008) Metal doped silica membrane reactor: operational effects of reaction and permeation for the water gas shift reaction. J Membr Sci 316:46–52CrossRefGoogle Scholar
  59. 59.
    Battersby S, Smart S, Ladewig B, Liu S, Duke MC, Rudolph V, Diniz da Costa JC (2009) Hydrothermal stability of cobalt silica membranes in a water gas shift membrane reactor. Sep Purif Technol 66:299–305CrossRefGoogle Scholar
  60. 60.
    Kikuchi E, Uemiya S, Sato N, Inoue H, Ando H, Matsuda T (1989) Membrane reactor using microporous glass supported thin film of palladium. Application to the water gas shift reaction. Chem Lett 18:489–492CrossRefGoogle Scholar
  61. 61.
    Uemiya S, Sato N, Ando H, Kikuchi E (1991) The water gas shift reaction assisted by a palladium membrane reactor. Ind Eng Chem Res 30:585–589CrossRefGoogle Scholar
  62. 62.
    Criscuoli A, Basile A, Drioli E, Loiacono O (2001) An economic feasibility study for water gas shift membrane reactor. J Membr Sci 181:21–27CrossRefGoogle Scholar
  63. 63.
    Galuszka J, Giddings T (accepted for publication) Silica membranes-preparation by chemical vapour deposition and characteristics. In: Basile A (ed) Membranes for membrane reactors: preparation, optimization and selection, chap 12. WileyGoogle Scholar
  64. 64.
    Brunetti A, Barbieri G, Drioli E, Lee K-H, Sea B, Lee D-W (2007) WGS reaction in a membrane reactor using a porous stainless steel supported silica membrane. Chem Eng Process 46:119–126CrossRefGoogle Scholar
  65. 65.
    Galuszka J, Giddings T, Iaquaniello G. Integration of membrane reactor and IGCC technologies: experimental study and reactor modeling. Chem Eng Process (to be published)Google Scholar
  66. 66.
    Li J, Yoon H, Oh TK, Wachsman ED (2009) High temperature SrCe0.9Eu0.1O3-δ proton conducting membrane reactor for H2 production using the water–gas shift reaction. Appl Catal B 92:234–239CrossRefGoogle Scholar
  67. 67.
    Huang J, El-Azzami L, Ho WSW (2005) Modeling of CO2-selective water gas shift membrane reactor for fuel cell. J Membr Sci 261:67–75CrossRefGoogle Scholar
  68. 68.
    Zou J, Huang J, Ho WSW (2007) CO2-selective water gas shift membrane reactor for fuel cell hydrogen processing. Ind Eng Chem Res 46:2272–2279CrossRefGoogle Scholar
  69. 69.
    Huang J, Ho WSW (2008) Effect of system parameters on the performance of CO2-selective WGS membrane reactor for fuel cells. J Chin Inst Chem Eng 39:129–136CrossRefGoogle Scholar
  70. 70.
    Palma V, Palo E, Ciambelli P (2009) Structured catalytic substrates with radial configurations for the intensification of the WGS stage in H2 production. Catal Today 147S:S107–112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Paolo Ciambelli
    • 1
  • Vincenzo Palma
    • 2
  • Emma Palo
    • 3
  • Jan Galuszka
  • Terry Giddings
  • Gaetano Iaquaniello
  1. 1.Department of Chemical and Food EngineeringUniversity of SalernoFiscianoItaly
  2. 2.Natural Resources CanadaCanmetENERGYOttawaCanada
  3. 3.Tecnimont KT, S.p.ARomeItaly

Personalised recommendations