Skip to main content

Technical and Economical Evaluation of WGSR

  • Chapter
  • First Online:
Membrane Reactors for Hydrogen Production Processes

Abstract

The catalytic conversion of CO through the water–gas shift reaction (WGSR) is of great importance in many of today’s chemical industries, such as ammonia and methanol synthesis. One of the emerging new applications of the WGSR is pertinent to membrane-assisted Integrated Gasification Combined Cycle (IGCC) for clean energy or clean hydrogen production with zero CO2 emissions. The use of membrane reactors offers a significant advantage by lowering process intensity and reducing the cost of CO2 capture. The integration of IGCC with membrane technology could be realized either as an open architecture (OA) where hydrogen separation ceramic modules are located before and after the WGSR or as an integral WGSR membrane reactor (closed architecture (CA)) where reaction and separation happen in a single step. The first part discusses mathematical modelling of this more complex, but perhaps more efficient, integral WGSR membrane reactor. A techno-economic analysis comparing the conventional technology with membrane-assisted WGSR developed around OA, considered the first step towards commercial realization, is discussed in the second part of this chapter.

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns DT, Piccardi G, Sabbatini L (2008) Some people and places important in the history of analytical chemistry in Italy. Microchim Acta 160:57–87

    Article  Google Scholar 

  2. Mond L, Langer C (1888) Improvements in obtaining hydrogen. British Patent 12608

    Google Scholar 

  3. Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107:3952–3991

    Article  Google Scholar 

  4. Lei Y, Cant NW, Trimm DL (2005) Activity patterns for the water gas shift reaction over supported precious metal catalysts. Catal Lett 103:133–136

    Article  Google Scholar 

  5. Lei Y, Cant NW, Trimm DL (2005) Kinetics of the water–gas shift reaction over a rhodium-promoted iron–chromium oxide catalyst. Chem Eng J 114:81–85

    Article  Google Scholar 

  6. Lei Y, Cant NW, Trimm DL (2006) The origin of rhodium promotion of Fe3O4–Cr2O3 catalysts for the high-temperature water–gas shift reaction. J Catal 239:227–236

    Article  Google Scholar 

  7. Rhodes C, Williams BP, King F, Hutchings GJ (2002) Promotion of Fe3O4/Cr2O3 high temperature water gas shift catalyst. Catal Commun 3:381–384

    Article  Google Scholar 

  8. Natesakhawat S, Wang X, Zhang L, Ozkan US (2006) Development of chromium-free iron-based catalysts for high-temperature water-gas shift reaction. J Mol Catal A Chem 260:82–94

    Article  Google Scholar 

  9. Martos C, Dufour J, Ruiz A (2009) Synthesis of Fe3O4-based catalysts for the high-temperature water gas shift reaction. Int J Hydrogen Energy 34:4475–4481

    Article  Google Scholar 

  10. Maroño M, Ruiz E, Sánchez JM, Martos C, Dufour J, Ruiz A (2009) Performance of Fe–Cr based WGS catalysts prepared by co-precipitation and oxi-precipitation methods. Int J Hydrogen Energy 34:8921–8928

    Article  Google Scholar 

  11. Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takeira K (2008) Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water–gas shift reaction. Catalyst preparation by adopting “memory effect” of hydrotalcite. Appl Catal A 337:48–57

    Article  Google Scholar 

  12. Guo P, Chen L, Yang Q, Qiao M, Li H, Li H, Xu H, Fan K (2009) Cu/ZnO/Al2O3 water–gas shift catalysts for practical fuel cell applications: the performance in shut-down/start-up operation. Int J Hydrogen Energy 34:2361–2368

    Article  Google Scholar 

  13. Tang X-J, Fei J-H, Hou Z-Y, Lou H, Zheng X-M (2008) Copper-zinc oxide and manganese promoted copper-zinc oxide as highly active catalysts for water–gas shift reaction. React Kinet Catal Lett 94:3–9

    Article  Google Scholar 

  14. Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Appl Catal B 27:179–191

    Article  Google Scholar 

  15. Djinović P, Batista J, Pintar A (2008) Calcination temperature and CuO loading dependence on CuO–CeO2 catalyst activity for water-gas shift reaction. Appl Catal A 347:23–33

    Article  Google Scholar 

  16. Djinović P, Levec J, Pintar A (2008) Effect of structural and acidity/basicity changes of CuO–CeO2 catalysts on their activity for water–gas shift reaction. Catal Today 138:222–227

    Article  Google Scholar 

  17. Djinović P, Batista J, Levec J, Pintar A (2009) Comparison of water–gas shift reaction activity and long-term stability of nanostructured CuO–CeO2 catalysts prepared by hard template and co-precipitation methods. Appl Catal A 364:156–165

    Article  Google Scholar 

  18. Djinović P, Batista J, Pintar A (2009) WGS reaction over nanostructured CuO–CeO2 catalysts prepared by hard template method: characterization, activity and deactivation. Catal Today 147S:S191–197

    Article  Google Scholar 

  19. Wheeler C, Jhalani A, Klein EJ, Tummala S, Schmidt LD (2004) The water–gas-shift reaction at short contact times. J Catal 223:191

    Article  Google Scholar 

  20. Radhakrishnan R, Willigan RR, Dardas Z, Vanderspurt TH (2006) Water gas shift activity and kinetics of Pt/Re catalysts supported on ceria-zirconia oxides. Appl Catal B 66:23–28

    Article  Google Scholar 

  21. Jacobs G, Ricote S, Davis BH (2006) Low temperature water-gas shift: type and loading of metal impacts decomposition and hydrogen exchange rates of pseudo-stabilized formate over metal/ceria catalysts. Appl Catal A 302:14–21

    Article  Google Scholar 

  22. Panagiotopoulou P, Papavasiliou J, Avgouropoulos G, Ioannides T, Kondarides DI (2007) Water–gas shift activity of doped Pt/CeO2 catalysts. Chem Eng J 134:16–22

    Article  Google Scholar 

  23. Kim YT, Park ED, Lee HC, Lee D, Lee KH (2009) Water–gas shift reaction over supported Pt-CeOx catalysts. Appl Catal B 90:45–54

    Article  Google Scholar 

  24. Lim S, Bae J, Kim K (2009) Study of activity and effectiveness factor of noble metal catalysts for water–gas shift reaction. Int J Hydrogen Energy 34:870–876

    Article  Google Scholar 

  25. Ciambelli P, Palma V, Palo E, Iaquaniello G (2009) Experimental and economical approach to the integration of a kW-scale CH4-ATR reactor with a WGS stage. Chem Eng Trans 18:499–504

    Google Scholar 

  26. Duarte de Farias AM, Nguyen-Thanh D, Fraga MA (2010) Discussing the use of modified ceria as support for Pt catalysts on water–gas shift reaction. Appl Catal B 93:250–258

    Article  Google Scholar 

  27. González ID, Navarro RM, Wen W, Marinkovic N, Rodriguéz JA, Rosa F, Fierro JLG (2010) A comparative study of the water gas shift reaction over platinum catalysts supported on CeO2, TiO2 and Ce-modified TiO2. Catal Today 149:372–379

    Article  Google Scholar 

  28. Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Nanostructured Au–CeO2 catalysts for low-temperature water–gas shift. Catal Lett 77:87–95

    Article  Google Scholar 

  29. Fu Q, Kudriavtseva S, Saltsburg H, Flytzani-Stephanopoluos M (2003) Gold-ceria catalysts for low-temperature water–gas shift reaction. Chem Eng J 93:41–53

    Article  Google Scholar 

  30. Burch R (2006) Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. Phys Chem Chem Phys 8:5483–5500

    Article  Google Scholar 

  31. Andreeva D, Ivanov I, Ilieva L, Sobczak JW, Avdeev G, Petrov K (2007) Gold based catalysts on ceria and ceria-alumina for WGS reaction (WGS Gold catalysts). Top Catal 44:173–182

    Article  Google Scholar 

  32. Sandoval A, Gómez-Cortés A, Zanella R, Díaz G, Saniger JM (2007) Gold nanoparticles: support effects for the WGS reaction. J Mol Catal A 278:200–208

    Article  Google Scholar 

  33. Fonseca AA, Fisher JM, Ozkaya D, Shannon MD, Thompsett D (2007) Ceria-zirconia supported Au as highly active low temperature water–gas shift catalysts. Top Catal 44:223–235

    Article  Google Scholar 

  34. Bond G (2009) Mechanisms of the gold-catalysed water-gas shift. Gold Bull 42:337–342

    Article  Google Scholar 

  35. Personal Communications with Elcogas-MRP-Cosero, October (2006)

    Google Scholar 

  36. Bracht M, Alderliesten PT, Kloster R, Pruschek R, Haupt G, Xue E, Ross JRH, Koukou MK, Papayannakos N (1996) Water gas shift membrane reactor for CO2 control in IGCC systems: techno-economic feasibility study. Energy Convers 38:S159–164

    Article  Google Scholar 

  37. Chiesa P, Kreutz TG, Lozza GG (2007) CO2 sequestration from IGCC power plants by means of metallic membranes. J Eng Gas Turbines Power 129:123–134

    Article  Google Scholar 

  38. De Lorenzo L, Kreutz TG, Chiesa P, Williams RH (2008) Carbon-free hydrogen and electricity from coal: options for syngas cooling in systems using a hydrogen separation membrane reactor. J Eng Gas Turbines Power 130:031401-1

    Google Scholar 

  39. Diniz da Costa JC, Reed GP, Thambimuthu K (2009) High temperature gas separation membranes in coal gasification. Energy Procedia 1:295–302

    Article  Google Scholar 

  40. Manzolini G, Viganò F (2009) Co-production of hydrogen and electricity from autothermal reforming of natural gas by means of Pd-Ag membranes. Energy Procedia 1:319–326

    Article  Google Scholar 

  41. Rezvani S, Huang Y, McIlveen-Wright D, Hewitt N, Mondol JD (2009) Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping. Fuel 88:2463–2472

    Article  Google Scholar 

  42. Jansen D, Dijkstra JW, van den Brink RW, Peters TA, Stange M, Bredesen R, Goldbach A, Xu HY, Gottschalk A, Doukelis A (2009) Hydrogen membrane reactors for CO2 capture. Energy Procedia 1:253–260

    Article  Google Scholar 

  43. Website: http://www.sud-chemie.com

  44. Doong SJ, Lau F, Roberts M, Ong E (2005) GTI’s solid fuel gasification to hydrogen program. In: The 3rd natural gas technology conference, Orlando, FL

    Google Scholar 

  45. Bredesen R, Jordal K, Bolland O (2004) High-temperature membranes in power generation with CO2 capture. Chem Eng Process 43:1129–1158

    Article  Google Scholar 

  46. Basile A, Drioli E, Santella F, Violante V, Capannelli G, Vitulli G (1995) A study on catalytic membrane reactors for water gas shift reaction. Gas Sep Purif 10:53–61

    Article  Google Scholar 

  47. Basile A, Criscuoli A, Santella F, Drioli E (1996) Membrane reactor for water gas shift reaction. Gas Sep Purif 10:243–254

    Article  Google Scholar 

  48. Criscuoli A, Basile A, Drioli E (2000) An analysis of the performance of membrane reactors for the water–gas shift reaction using gas feed mixtures. Catal Today 56:53–64

    Article  Google Scholar 

  49. Basile A, Chiappetta G, Tosti S, Violante V (2001) Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor. Sep Purif Technol 25:549–571

    Article  Google Scholar 

  50. Iyoha O, Enick R, Killmeyer R, Howard B, Morreale B, Ciocco M (2007) Wall-catalyzed water-gas shift reaction in multi-tubular Pd and 80 wt% Pd–20 wt% Cu membrane reactors at 1173 K. J Membr Sci 298:14–23

    Article  Google Scholar 

  51. Iyoha O, Enick R, Killmeyer R, Howard B, Ciocco M, Morreale B (2007) H2 production from simulated coal syngas containing H2S in multi-tubular Pd and 80 wt% Pd–20 wt% Cu membrane reactors at 1173 K. J Membr Sci 306:103–115

    Article  Google Scholar 

  52. Barbieri G, Brunetti A, Tricoli G, Drioli E (2008) An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen. Experimental analysis of water gas shift. J Power Sources 182:160–167

    Article  Google Scholar 

  53. Bi Y, Xu H, Li W, Goldbach A (2009) Water–gas shift reaction in a Pd membrane reactor over Pt/Ce0.6Zr0.4O2 catalyst. Int J Hydrogen Energy 34:2965–2971

    Article  Google Scholar 

  54. Brunetti A, Barbieri G, Drioli E (2009) Upgrading of a syngas mixture for pure hydrogen production in a Pd–Ag membrane reactor. Chem Eng Sci 64:3448–3454

    Article  Google Scholar 

  55. Brunetti A, Barbieri G, Drioli E (2009) Pd-based membrane reactor for syngas upgrading. Energy Fuels 23:5073–5076

    Article  Google Scholar 

  56. Brunetti A, Barbieri G, Drioli E, Granato T, Lee K-H (2007) A porous stainless steel supported silica membrane for WGS reaction in a catalytic membrane reactor. Chem Eng Sci 62:5621–5626

    Article  Google Scholar 

  57. Giessler S, Jordan K, Diniz da Costa JC, Lu GQ(M) (2003) Performance of hydrophobic and hydrophilic silica membrane reactors for the water gas shift reaction. Sep Purif Technol 33:255–264

    Google Scholar 

  58. Battersby S, Duke MC, Liu S, Rudolph V, Diniz da Costa JC (2008) Metal doped silica membrane reactor: operational effects of reaction and permeation for the water gas shift reaction. J Membr Sci 316:46–52

    Article  Google Scholar 

  59. Battersby S, Smart S, Ladewig B, Liu S, Duke MC, Rudolph V, Diniz da Costa JC (2009) Hydrothermal stability of cobalt silica membranes in a water gas shift membrane reactor. Sep Purif Technol 66:299–305

    Article  Google Scholar 

  60. Kikuchi E, Uemiya S, Sato N, Inoue H, Ando H, Matsuda T (1989) Membrane reactor using microporous glass supported thin film of palladium. Application to the water gas shift reaction. Chem Lett 18:489–492

    Article  Google Scholar 

  61. Uemiya S, Sato N, Ando H, Kikuchi E (1991) The water gas shift reaction assisted by a palladium membrane reactor. Ind Eng Chem Res 30:585–589

    Article  Google Scholar 

  62. Criscuoli A, Basile A, Drioli E, Loiacono O (2001) An economic feasibility study for water gas shift membrane reactor. J Membr Sci 181:21–27

    Article  Google Scholar 

  63. Galuszka J, Giddings T (accepted for publication) Silica membranes-preparation by chemical vapour deposition and characteristics. In: Basile A (ed) Membranes for membrane reactors: preparation, optimization and selection, chap 12. Wiley

    Google Scholar 

  64. Brunetti A, Barbieri G, Drioli E, Lee K-H, Sea B, Lee D-W (2007) WGS reaction in a membrane reactor using a porous stainless steel supported silica membrane. Chem Eng Process 46:119–126

    Article  Google Scholar 

  65. Galuszka J, Giddings T, Iaquaniello G. Integration of membrane reactor and IGCC technologies: experimental study and reactor modeling. Chem Eng Process (to be published)

    Google Scholar 

  66. Li J, Yoon H, Oh TK, Wachsman ED (2009) High temperature SrCe0.9Eu0.1O3-δ proton conducting membrane reactor for H2 production using the water–gas shift reaction. Appl Catal B 92:234–239

    Article  Google Scholar 

  67. Huang J, El-Azzami L, Ho WSW (2005) Modeling of CO2-selective water gas shift membrane reactor for fuel cell. J Membr Sci 261:67–75

    Article  Google Scholar 

  68. Zou J, Huang J, Ho WSW (2007) CO2-selective water gas shift membrane reactor for fuel cell hydrogen processing. Ind Eng Chem Res 46:2272–2279

    Article  Google Scholar 

  69. Huang J, Ho WSW (2008) Effect of system parameters on the performance of CO2-selective WGS membrane reactor for fuel cells. J Chin Inst Chem Eng 39:129–136

    Article  Google Scholar 

  70. Palma V, Palo E, Ciambelli P (2009) Structured catalytic substrates with radial configurations for the intensification of the WGS stage in H2 production. Catal Today 147S:S107–112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ciambelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ciambelli, P., Palma, V., Palo, E., Galuszka, J., Giddings, T., Iaquaniello, G. (2011). Technical and Economical Evaluation of WGSR. In: De De Falco, M., Marrelli, L., Iaquaniello, G. (eds) Membrane Reactors for Hydrogen Production Processes. Springer, London. https://doi.org/10.1007/978-0-85729-151-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-151-6_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-150-9

  • Online ISBN: 978-0-85729-151-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics