Autothermal Reforming Case Study

  • Paolo Ciambelli
  • Vincenzo Palma
  • Gaetano Iaquaniello
  • Emma Palo


Autothermal reforming reaction (ATR) is one of the key technologies for the production of synthesis gas. With respect to the more traditional steam reforming, ATR offers a more integrated reaction system characterized by low volume and fast start-up and response to load demand, thus being more suitable for the assessment of a distributed power generation. A theoretically higher efficiency can be achieved by integrating in the system a H2 permselective membrane, thus shifting the equilibrium and allowing higher CH4 conversion at lower temperature. This option, already assessed in literature from a modelling point of view, has been experimentally demonstrated with a fixed bed ATR kW-scale reactor developed at the University of Salerno. The chapter focuses on the all operations needed to be implemented in order to guarantee a proper exploitation of the membrane without altering its stability and performance.


Membrane Reactor Steam Reformer Knudsen Diffusion Retentate Side Molar Flow Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Song X, Guo Z (2006) Technologies for direct production of flexible H2/CO synthesis gas. Energy Convers Manag 47:560–569CrossRefGoogle Scholar
  2. 2.
    Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107:3952–3991CrossRefGoogle Scholar
  3. 3.
    Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Cat Today 139:244–260CrossRefGoogle Scholar
  4. 4.
    Haldor Topsoe A/S (1988) Hydrocarbon Process 67:77Google Scholar
  5. 5.
    Aasberg-Petersen A, Bak Hansen J-H, Christensen TS, Dybkjaer I, Christensen PS, Stub Nielsen C, Winter Madsen SEL, Rostrup-Nielsen JR (2001) Technologies for large-scale gas conversion. Appl Catal A 221:379–387CrossRefGoogle Scholar
  6. 6.
    Joensen F, Rostrup-Nielsen JR (2002) Conversion of hydrocarbons and alcohols for fuel cells. J Power Sources 105:195–201CrossRefGoogle Scholar
  7. 7.
    Heinzel A, Vogel B, Hübner P (2002) Reforming of natural gas-hydrogen generation for small scale stationary fuel cell systems. J Power Sources 105:202–207CrossRefGoogle Scholar
  8. 8.
    Vermeiren WJM, Blomsma E, Jacobs PA (1992) Catalytic and thermodynamic approach of the oxyreforming reaction of methane. Catal Today 13:427–436CrossRefGoogle Scholar
  9. 9.
    Lee SHD, Applegate DV, Ahmed S, Calderone SG, Harvey TL (2005) Hydrogen from natural gas. Part I: autothermal reforming in an integrated fuel processor. Int J Hydrogen Energy 30:829–842CrossRefGoogle Scholar
  10. 10.
    Krumpelt M, Krause TR, Carter JD, Kopasz JP, Ahmed S (2002) Fuel processing for fuel cell systems in transportation and portable power applications. Cat Today 77:3–16CrossRefGoogle Scholar
  11. 11.
    Wang HM (2008) Experimental studies on hydrogen generation by methane autothermal reforming over nickel-based catalyst. J Power Sources 177:506–511CrossRefGoogle Scholar
  12. 12.
    Hoang DL, Chan SH, Ding OL (2006) Hydrogen production for fuel cells by autothermal reforming of methane over sulfide nickel catalyst on a gamma alumina support. J Power Sources 159:1248–1257CrossRefGoogle Scholar
  13. 13.
    Horn R, Williams KA, Degenstein NJ, Bitsch-Larsen A, Dalle Nogare D, Tupy SA, Schmidt LD (2007) Methane catalytic partial oxidation on autothermal Rh and Pt foam catalysts: oxidation and reforming zones, transport effects, and approach to thermodynamic equilibrium. J Catal 249:380–393CrossRefGoogle Scholar
  14. 14.
    Hoang DL, Chan SH (2004) Modeling of a catalytic autothermal methane reformer for fuel cell applications. Appl Catal A 268:207–216CrossRefGoogle Scholar
  15. 15.
    Ding OL, Chan SH (2008) Autothermal reforming of methane gas—modelling and experimental validation. Int J Hydrogen Energy 33:633–643CrossRefGoogle Scholar
  16. 16.
    Faur Ghenciu A (2002) Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr Opin Solid State Mater Sci 6:389–399CrossRefGoogle Scholar
  17. 17.
    Takeguchi T, Furukawa S-N, Inoue M, Eguchi K (2003) Autothermal reforming of methane over Ni catalysts supported over CaO–CeO2–ZrO2 solid solution. Appl Catal A 240:223–233CrossRefGoogle Scholar
  18. 18.
    Choudhary VR, Mondal KC, Mamman AS (2005) High-temperature stable and highly active/selective supported NiCoMgCeOx catalyst suitable for autothermal reforming of methane to syngas. J Catal 233:36–40CrossRefGoogle Scholar
  19. 19.
    Cai X, Dong X, Lin W (2006) Autothermal reforming of methane over Ni catalysts supported on CuO–ZrO2–CeO2–A12O3. J Nat Gas Chem 15:122–126CrossRefGoogle Scholar
  20. 20.
    Dong X, Cai X, Song Y, Lin W (2007) Effect of transition metals (Cu, Co and Fe) on the autothermal reforming of methane over Ni/Ce0.2Zr0.1Al0.7Oδ catalyst. J Nat Gas Chem 16:31–36CrossRefGoogle Scholar
  21. 21.
    Cai X, Cai Y, Lin W (2008) Autothermal reforming of methane over Ni catalysts supported over ZrO2–CeO2–Al2O3. J Nat Gas Chem 17:201–207CrossRefGoogle Scholar
  22. 22.
    Chen X, Tadd AR, Schwank JW (2007) Carbon deposited on Ni/Ce–Zr–O isooctane autothermal reforming catalysts. J Catal 251:374–387CrossRefGoogle Scholar
  23. 23.
    Villegas L, Masset F, Guilhaume N (2007) Wet impregnation of alumina-washcoated monoliths: effect of the drying procedure on Ni distribution and on autothermal reforming activity. Appl Catal A 320:43–55CrossRefGoogle Scholar
  24. 24.
    Souza MMVM, Schmal M (2005) Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Appl Catal A 281:19–24CrossRefGoogle Scholar
  25. 25.
    Ruiz JAC, Passos FB, Bueno JMC, Souza-Aguiar EF, Mattos LV, Noronha FB (2008) Syngas production by autothermal reforming of methane on supported platinum catalysts. Appl Catal A 334:259–267CrossRefGoogle Scholar
  26. 26.
    Li B, Maruyama K, Nurunnabi M, Kunimori K, Tomishige K (2004) Temperature profiles of alumina-supported noble metal catalysts in autothermal reforming of methane. Appl Catal A 275:157–172CrossRefGoogle Scholar
  27. 27.
    Kolb G, Baier T, Schürer J, Tiemann D, Ziogas A, Ehwald H, Alphonse P (2008) A micro-structured 5 kW complete fuel processor for iso-octane as hydrogen supply system for mobile auxiliary power units. Part I: development of autothermal reforming catalyst and reactor. Chem Eng J 137:653–663CrossRefGoogle Scholar
  28. 28.
    Qi A, Wang S, Ni C, Wu D (2007) Autothermal reforming of gasoline on Rh-based monolithic catalysts. Int J Hydrogen Energy 32:981–991CrossRefGoogle Scholar
  29. 29.
    Kaila RK, Gutiérrez A, Korhonen ST, Krause AOI (2007) Autothermal reforming of n-dodecane, toluene, and their mixture on mono- and bimetallic noble metal zirconia catalysts. Catal Lett 115:70–78CrossRefGoogle Scholar
  30. 30.
    Qi A, Wang S, Fu G, Wu D (2005) Autothermal reforming of n-octane on Ru-based catalysts. Appl Catal A 293:71CrossRefGoogle Scholar
  31. 31.
    Kaila RK, Krause AOI (2006) Autothermal reforming of simulated gasoline and diesel fuels. Int J Hydrogen Energy 31:1934–1941CrossRefGoogle Scholar
  32. 32.
    Kaila RK, Gutiérrez A, Krause AOI (2008) Autothermal reforming of simulated and commercial diesel: The performance of zirconia-supported RhPt catalyst in the presence of sulphur. Appl Catal B 84:324–331CrossRefGoogle Scholar
  33. 33.
    Cheekatamarla PK, Lane AM (2005) Catalytic autothermal reforming of diesel fuel for hydrogen generation in fuel cells I. Activity tests and sulfur poisoning. J Power Sources 152:256–263CrossRefGoogle Scholar
  34. 34.
    Cheekatamarla PK, Lane AM (2006) Catalytic autothermal reforming of diesel fuel for hydrogen generation in fuel cells II. Catalyst poisoning and characterization studies. J Power Sources 154:223–231CrossRefGoogle Scholar
  35. 35.
    Shamsi A, Baltrus JP, Spivey JJ (2005) Characterization of coke deposited on Pt/alumina catalyst during reforming of liquid hydrocarbons. Appl Catal A 293:145–152CrossRefGoogle Scholar
  36. 36.
    Recupero V, Pino L, Vita A, Cipitì F, Cordaro M, Laganà M (2005) Development of a LPG fuel processor for PEFC systems: laboratory scale evaluation of autothermal reforming and preferential oxidation subunits. Int J Hydrogen Energy 30:963–971CrossRefGoogle Scholar
  37. 37.
    Ferrandon M, Krause T (2006) Role of the oxide support on the performance of Rh catalysts for the autothermal reforming of gasoline and gasoline surrogates to hydrogen. Appl Catal A 311:135–145CrossRefGoogle Scholar
  38. 38.
    Yuan Z, Ni C, Zhang C, Gao D, Wang S, Xie Y, Okada A (2009) Rh/MgO/Ce0.5Zr0.5O2 supported catalyst for autothermal reforming of methane: the effects of ceria-zirconia doping. Catal Today 146:124–131CrossRefGoogle Scholar
  39. 39.
    Cao L, Pan L, Ni C, Yuan Z, Wang S (2010) Autothermal reforming of methane over Rh/Ce0.5Zr0.5O2 catalyst: effects of the crystal structure of the supports. Fuel Process Technol 91:306–312CrossRefGoogle Scholar
  40. 40.
    Cheekatamarla PK, Lane AM (2005) Efficient bimetallic catalysts for hydrogen generation from diesel fuel. Int J Hydrogen Energy 30:1277–1285CrossRefGoogle Scholar
  41. 41.
    Cheekatamarla PK, Lane AM (2006) Efficient sulfur-tolerant bimetallic catalysts for hydrogen generation from diesel fuel. J Power Sources 153:157–164CrossRefGoogle Scholar
  42. 42.
    Dias JAC, Assaf JM (2004) Autothermal reforming of methane over Ni/γ-Al2O3 catalysts: the enhancement effect of small quantities of noble metals. J Power Sources 130:106–110CrossRefGoogle Scholar
  43. 43.
    Dias JAC, Assaf JM (2005) Autoreduction of promoted Ni/γ-Al2O3 during autothermal reforming of methane. J Power Sources 139:176–181CrossRefGoogle Scholar
  44. 44.
    Dias JAC, Assaf JM (2008) Autothermal reforming of methane over Ni/γ-Al2O3 promoted with Pd. The effect of the Pd source in activity, temperature profile of reactor and in ignition. Appl Catal A 334:243–250CrossRefGoogle Scholar
  45. 45.
    Gökaliler F, Selen Çağlayan B, İlsen Önsan Z, Erhan Aksoylu A (2008) Hydrogen production by autothermal reforming of LPG for PEM fuel cell applications. Int J Hydrogen Energy 33:1383–1391CrossRefGoogle Scholar
  46. 46.
    Parizotto NV, Zanchet D, Rocha KO, Marques CMP, Bueno JMC (2009) The effect of Pt promotion on the oxi-reduction properties of alumina supported nickel catalysts for oxidative steam-reforming of methane: temperature-resolved XAFS analysis. Appl Catal A 366:122–129CrossRefGoogle Scholar
  47. 47.
    Dantas SC, Escritori JC, Soares RR, Hori CE (2010) Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane. Chem Eng J 156:380–387CrossRefGoogle Scholar
  48. 48.
    Liu D-J, Krumpelt M, Chien H-T, Sheen S-H (2006) Critical issues in catalytic diesel reforming for solid oxide fuel cells. J Mater Eng Perform 15:442–444CrossRefGoogle Scholar
  49. 49.
    Liu D-J, Krumpelt M (2005) Activity and structure of perovskites as diesel-reforming catalysts for solid oxide fuel cell. Int J Appl Ceram Technol 2:301–307CrossRefGoogle Scholar
  50. 50.
    Qi A, Wang S, Fu G, Ni C, Wu D (2005) La–Ce–Ni–O monolithic perovskite catalysts potential for gasoline autothermal reforming system. Appl Catal A 281:233–246CrossRefGoogle Scholar
  51. 51.
    Erri P, Dinka P, Varma A (2006) Novel perovskite-based catalysts for autothermal JP-8 fuel reforming. Chem Eng Sci 61:5328–5333CrossRefGoogle Scholar
  52. 52.
    Mawdsley JR, Krause TR (2008) Rare earth-first-row transition metal perovskites as catalysts for the autothermal reforming of hydrocarbon fuels to generate hydrogen. Appl Catal A 334:311–320CrossRefGoogle Scholar
  53. 53.
    Rostrup-Nielsen JR (2000) New aspects of syngas production and use. Catal Today 63:159CrossRefGoogle Scholar
  54. 54.
    Ahmed S, Krumpelt M (2001) Hydrogen from hydrocarbon fuels for fuel cells. Int J Hydrogen Energy 26:291–301CrossRefGoogle Scholar
  55. 55.
    Maestri M, Beretta A, Groppi G, Tronconi E, Forzatti P (2005) Comparison among structured and packed-bed reactors for the catalytic partial oxidation of CH4 at short contact times. Catal Today 105:709–717CrossRefGoogle Scholar
  56. 56.
    Giroux T, Hwang S, Liu Y, Ruettinger W, Shore L (2005) Monolithic structures as alternatives to particulate catalysts for the reforming of hydrocarbons for hydrogen generation. Appl Catal B 55:185–200CrossRefGoogle Scholar
  57. 57.
    Kikuchi E (2000) Membrane reactor application to hydrogen production. Catal Today 56:97–101CrossRefGoogle Scholar
  58. 58.
    Ciambelli P, Palma V, Palo E, Sannino D (2005) Hydrogen production via catalytic autothermal reforming of methane. In: Proceedings of “7th World Congress of Chemical Engineering”, Glasgow (Scotland) July 10–14, p 225Google Scholar
  59. 59.
    Palo E (2007) Structured catalysts for hydrogen production by methane autothermal reforming. Ph.D Thesis, University of SalernoGoogle Scholar
  60. 60.
    Ciambelli P, Palma V, Palo E, Iaquaniello G (2009) Natural gas autothermal reforming: an effective option for a sustainable distributed production of hydrogen. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production. Wiley, Weinheim, pp 287–319Google Scholar
  61. 61.
    Iaquaniello G, Mangiapane A, Ciambelli P, Palma V, Palo E (2005) Small scale hydrogen production. Chem Eng Trans 8:19–26Google Scholar
  62. 62.
    Ciambelli P, Palma V, Palo E, Iaquaniello G, Mangiapane A, Cavallero P (2007) Energy sustainable development through methane autothermal reforming for hydrogen production. AIDIC Conf Series 8:67–76Google Scholar
  63. 63.
    Ciambelli P, Palma V, Palo E (2008) Comparison of ceramic honeycomb monolith and foam as Ni catalyst carrier for methane autothermal reforming. Catal Today. Catal Today 155:92–100 Google Scholar
  64. 64.
    Ciambelli P, Palma V, Palo E, Villa P (2008) Reattore catalitico autotermico con profilo di temperatura piatto per la produzione di idrogeno da idrocarburi leggeri. Italian Patent Pending SA2008A/000023Google Scholar
  65. 65.
    Ciambelli P, Palma V, Palo E, Villa P (2010) Autothermal catalytic reactor with flat temperature profile. PCT Int. Appl. WO 2010/016027Google Scholar
  66. 66.
    Ciambelli P, Palma V, Palo E, Iaquaniello G (2009) Experimental and economical approach to the integration of a kW-scale CH4-ATR reactor with a WGS stage. Chem Eng Trans 18:499–504Google Scholar
  67. 67.
    Palma V, Palo E, Ciambelli P (2009) Structured catalytic substrates with radial configurations for the intensification of the WGS stage in H2 production. Catal Today 147:S107–112CrossRefGoogle Scholar
  68. 68.
    Lattner JR, Harold MP (2004) Comparison of conventional and membrane reactor fuel processors for hydrocarbon-based PEM fuel cell systems. Int J Hydrogen Energy 29:393–412CrossRefGoogle Scholar
  69. 69.
    Lattner JR, Harold MP (2005) Comparison of methanol-based fuel processors for PEM fuel cell systems. Appl Catal B 56:149–196CrossRefGoogle Scholar
  70. 70.
    Tiemersma TP, Patil CS, van Sint Annaland M, Kuipers JAM (2006) Modelling of packed bed membrane reactors for autothermal production of ultrapure hydrogen. Chem Eng Sci 61:1602–1616CrossRefGoogle Scholar
  71. 71.
    Feng W, Tan T, Ji P, Zheng D (2006) Exploration of hydrogen production in a membrane reformer. AIChE J 52:2260–2270CrossRefMATHGoogle Scholar
  72. 72.
    Feng W, Ji P (2007) Multistage two-membrane ATR reactors to improve pure hydrogen production. Chem Eng Sci 62:6349–6360CrossRefGoogle Scholar
  73. 73.
    Hüppmeier J, Baune M, Thöming J (2008) Interactions between reaction kinetics in ATR-reactors and transport mechanism in functional ceramic membranes: a simulation approach. Chem Eng J 142:225–238CrossRefGoogle Scholar
  74. 74.
    Chen Z, Yan Y, Elnashaie SSEH (2003) Modeling and optimization of a novel membrane reformer for higher hydrocarbons. AIChE J 49:1250–1265CrossRefGoogle Scholar
  75. 75.
    Prasad P, Elnashaie SSEH (2003) Coupled steam and oxidative reforming for hydrogen production in a novel membrane circulating fluidized-bed reformer. Ind Eng Chem Res 42:4715–4722CrossRefGoogle Scholar
  76. 76.
    Chen Z, Yan Y, Elnashaie SSEH (2003) Novel circulating fast fluidized-bed membrane reformer for efficient production of hydrogen from steam reforming of methane. Chem Eng Sci 58:4335–4349CrossRefGoogle Scholar
  77. 77.
    Patil CS, van Sint Annaland M, Kuipers JAM (2005) Design of a novel autothermal membrane-assisted fluidized-bed reactor for the production of ultrapure hydrogen from methane. Ind Eng Chem Res 44:9502–9512CrossRefGoogle Scholar
  78. 78.
    Chen Z, Grace JR, Lim CJ, Li A (2007) Experimental studies of pure hydrogen production in a commercialized fluidized-bed membrane reactor with SMR and ATR catalysts. Int J Hydrogen Energy 32:2359–2366CrossRefGoogle Scholar
  79. 79.
    Mahecha-Botero A, Boyd T, Gulamhusein A, Comyn N, Lim CJ, Grace JR, Shirasaki Y, Yasuda I (2008) Pure hydrogen generation in a fluidized-bed membrane reactor: experimental findings. Chem Eng Sci 63:2752–2762CrossRefGoogle Scholar
  80. 80.
    Gallucci F, Van Sint Annaland M, Kuipers JAM (2008) Autothermal reforming of methane with integrated CO2 capture in a novel fluidized bed membrane reactor. Part 1: experimental demonstration. Top Catal 51:133–145CrossRefGoogle Scholar
  81. 81.
    Gallucci F, Van Sint Annaland M, Kuipers JAM (2008) Autothermal reforming of methane with integrated CO2 capture in a novel fluidized bed membrane reactor. Part 2: comparison of reactor configurations. Top Catal 51:146–157CrossRefGoogle Scholar
  82. 82.
    Simakov DSA, Sheintuch M (2008) Design of a thermally balanced membrane reformer for hydrogen production. AIChE J 54:2735–2750CrossRefGoogle Scholar
  83. 83.
    Lu GQ, Diniz da Costa JC, Duke M, Giessler S, Socolow R, Williams RH, Kreutz T (2007) Inorganic membranes for hydrogen production and purification: a critical review and perspective. J Colloid Interface Sci 314:589–603CrossRefGoogle Scholar
  84. 84.
    Breck DW (1974) Zeolite molecular sieves: structure, chemistry and use. Wiley, New York, p 636Google Scholar
  85. 85.
    Lee D, Oyama ST (2002) Gas permeation characteristics of a hydrogen selective supported silica membrane. J Membr Sci 210:291–306CrossRefGoogle Scholar
  86. 86.
    de Lange RSA, Keizer K, Burggraaf AJ (1995) Analysis and theory of gas transport in microporous sol–gel derived ceramic membranes. J Membr Sci 104:81–100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Paolo Ciambelli
    • 1
  • Vincenzo Palma
    • 2
  • Gaetano Iaquaniello
  • Emma Palo
  1. 1.Department of Chemical and Food EngineeringUniversity of SalernoFiscianoItaly
  2. 2.Tecnimont KT, S.p.ARomeItaly

Personalised recommendations