Membrane Integration in Natural Gas Steam Reforming



chemical industry, as reactant for the ammonia and methanol synthesis, for the hydrogenation of vegetable oil and as reductant to produce metals from their oxides;


Methane Conversion Membrane Reactor Pressure Swing Adsorption Selective Membrane Steam Reformer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vancini CA (1961) La Sintesi dell’Ammoniaca. In: Hoepli(ed.), Milan, ItalyGoogle Scholar
  2. 2.
    De Falco M (2004) Pd-based membrane reactor: a new technology for the improvement of methane steam reforming process. Thesis, University of Rome “La Sapienza”Google Scholar
  3. 3.
    De Falco M, Barba D, Cosenza S, Iaquaniello G, Farace A, Giacobbe FG (2009) Reformer and membrane modules plant to optimize natural gas conversion to hydrogen. Asia Pacific J Chem Eng Memb React. doi: 10.1002/apj.241
  4. 4.
    De Falco M, Basile A, Gallucci F (2010) Solar membrane natural gas steam reforming process: evaluation of reactor performance. Asia Pacific J Chem Eng Memb React 5:179–190CrossRefGoogle Scholar
  5. 5.
    Giaconia A, De Falco M, Caputo G, Grena R, Tarquini P, Marrelli L (2008) Solar steam reforming of natural gas for hydrogen production using molten salt heat carriers. AIChE J 54:1932–1944CrossRefGoogle Scholar
  6. 6.
    De Falco M, Iaquaniello G, Cucchiella B, Marrelli L (2009) Reformer and membrane modules plant to optimize natural gas conversion to hydrogen. In: Syngas: production methods, post treatment and economics, Nova Science Publishers Inc. New York. ISBN 978-1-60741-841-2Google Scholar
  7. 7.
    Shu J, Grandjean B, Kaliaguine S (1994) Methane steam reforming in asymmetric Pd and Pd–Ag porous SS membrane reactors. Appl Catal A General 119:305–325CrossRefGoogle Scholar
  8. 8.
    Lin Y, Liu S, Chuang C, Chu Y (2003) Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming: experimental and modeling. Catal Today 82:127–139CrossRefGoogle Scholar
  9. 9.
    Gallucci F, Paturzo L, Basile A (2004) A simulation study of steam reforming of methane in a dense tubular membrane reactor. Int J Hydrogen Energy 29:611–617CrossRefGoogle Scholar
  10. 10.
    Oklany J, Hou K, Hughes R (1998) A simulative comparison of dense and microporous membrane reactors for the steam reforming of methane. Appl Catal A General 170:13–22CrossRefGoogle Scholar
  11. 11.
    Madia G, Barbieri G, Drioli E (1999) Theoretical and experimental analysis of methane steam reforming in a membrane reactor. Canadian J Chem Eng 77:698–706CrossRefGoogle Scholar
  12. 12.
    Yu W, Ohmori T, Yamamoto T, Endo E, Nakaiwa T, Hayakawa T, Itoh N (2005) Simulation of porous ceramic membrane reactor for hydrogen production. Int J Hydrogen Energy 30:1071–1079CrossRefGoogle Scholar
  13. 13.
    Chai M, Machida M, Eguchi K, Arai H (1994) Promotion of hydrogen permeation on a metal-dispersed alumina membrane and its application to a membrane reactor for steam reforming. Appl Catal A General 110:239–250CrossRefGoogle Scholar
  14. 14.
    Fernandez F, Soares A Jr (2006) Methane steam reforming modeling in a palladium membrane reactor. Fuel 85:569–573CrossRefGoogle Scholar
  15. 15.
    Koukou M, Papayannakos N, Markatos NC (2001) On the importance of non-ideal flow effects in the operation of industrial-scale adiabatic membrane reactors. Chem Eng J 83:95–105CrossRefGoogle Scholar
  16. 16.
    De Falco M, Barba D, Cosenza S, Iaquaniello G, Marrelli L (2008) Reformer and membrane modules plant powered by a nuclear reactor or by a solar heated molten salts: assessment of the design variables and production cost evaluation. Int J Hydrogen Energy 33:5326–5334CrossRefGoogle Scholar
  17. 17.
    Perry R, Green D, Maloney J (1984) Perry’s chemical engineers’ handbook, 6th edn. McGraw Hill, New YorkGoogle Scholar
  18. 18.
    Reid R, Prausnitz J, Poling B (1988) The properties of gases and liquids, 4th edn. McGraw Hill, New YorkGoogle Scholar
  19. 19.
    Xu J, Froment G (1989) Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J 35:88–96CrossRefGoogle Scholar
  20. 20.
    Elnashaie S, Elshishini S (1993) Modelling, simulation and optimization of industrial fixed bed catalytic reactors, vol. 7 of Topics in Chemical Engineering, Gordon and Breach Science Publisher, New YorkGoogle Scholar
  21. 21.
    Winter CJ, Sizmann RL, Vant-Hull LL (1991) Solar power plants. Springer, New YorkCrossRefGoogle Scholar
  22. 22.
    Mills D (2004) Advances in solar thermal electricity technology. Sol Energy 76:19–31CrossRefGoogle Scholar
  23. 23.
    Herrmann U, Kearney DW (2002) Survey of thermal energy storage for parabolic trough plants. ASME J Sol Energy Eng 124:145–151CrossRefGoogle Scholar
  24. 24.
    Pacheco JE, Showalter SK, Kolb WJ (2002) Development of a molten-salt thermocline thermal storage system for parabolic trough plants. ASME J Sol Energy Eng 124:153–159CrossRefGoogle Scholar
  25. 25.
    Herrmann U, Kelly B, Price H (2004) Two-tank molten salt storage for parabolic trough solar power plants. Energy 29:883–893CrossRefGoogle Scholar
  26. 26.
    Kearney D, Herrmann U, Nava P, Kelly B, Mahoney R, Pacheco J et al (2003) Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. ASME J Sol Energy Eng 125:170–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity Campus Bio-Medico of RomeRomeItaly

Personalised recommendations