Hydrogen Palladium Selective Membranes: An Economic Perspective

  • G. Iaquaniello
  • A. Borruto
  • E. Lollobattista
  • G. Narducci
  • D. Katsir


Even if the interest toward hydrogen selective membranes working at high temperature is extremely increased in the last two decades, the progress in their manufacturing and commercialization is still limited. In this chapter, we want to focus on actual providers of membranes and a proper membrane manufacturing strategy (MMS) to improve their industrial competitiveness by lowering production costs. A target of 1.500–2,000 € per m2 for Pd alloy membranes and even lower for Si-based or other inorganic membranes, is possible if a manufacturing technique as the roll-in can be applied to mass production and a cumulative volume of production is reached.


Composite Membrane Physical Vapor Deposition Membrane Module Electroless Plating Chemical Vapor Deposition Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Li A, Grace JR, Lim CJ (2007) Preparation of thin Pd-based composite membrane on planar metallic substrate Part II. Preparation of membranes by electroless plating and characterization. J Membr Sci 306:159–165CrossRefGoogle Scholar
  2. 2.
    Tong JH, Kashima Y, Shirai R, Suda H, Matsumura Y (2005) Thin defect-free Pd membrane deposited on asymmetric porous stainless steel substrate. Ind Eng Chem Res 44:8025–8032CrossRefGoogle Scholar
  3. 3.
    Checchetto R, Bazzanella N, Patton B, Miotello A (2004) Palladium membranes prepared by r.f. magnetron sputtering for hydrogen purification. Surf Coat Tech 177–178:73–79CrossRefGoogle Scholar
  4. 4.
    Chen SC, Tu GC, Hung CCY, Huang CA, Rei MH (2008) Preparation of palladium membrane by electroplating on AISI 316L porous stainless steel supports and its use for methanol steam reformer. J Membr Sci 314:5–14CrossRefGoogle Scholar
  5. 5.
    Nam SE, Lee SH, Lee KH (1999) Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition. J Membr Sci 153:163–173CrossRefGoogle Scholar
  6. 6.
    Shu J, Adnot A, Grandjean BPA, Kaliaguine S (1996) Structurally stable composite Pd-Ag alloy membranes: introduction of a diffusion barrier. Thin Solid Films 286:72–79CrossRefGoogle Scholar
  7. 7.
    Wang D, Tong HH, Xu HY, Matsumura Y (2004) Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide. Catal Today 93–95:689–693CrossRefGoogle Scholar
  8. 8.
    Yepes D, Cornaglia LM, Irusta S, Lombardo EA (2006) Different oxides used as diffusion barriers in composite hydrogen permeable membranes. J Membr Sci 274:92–101CrossRefGoogle Scholar
  9. 9.
    ZHANG K, Gao H, Rui Z, Lin Y, Li Y (2007) Preparation of thin palladium composite membranes and application to hydrogen/nitrogen separation. Chin J Chern Eng 15(5):643–647CrossRefGoogle Scholar
  10. 10.
    Yan S, Maeda H, Kusakabe K, Morooka S (1994) Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation. Ind Eng Chem Res 33:616–622CrossRefGoogle Scholar
  11. 11.
    Zhang K, Wei X, Rui Z, Li Y, Lin YS (2009) Effect of metal-support interface on hydrogen permeation through palladium membranes. AIChE J 55(3):630–639CrossRefGoogle Scholar
  12. 12.
    Huang Y, Dittmeyer R (2006) Preparation and characterization of composite palladium membranes on sinter-metal supports with a ceramic barrier against intermetallic diffusion. J Membr Sci 282:296–310CrossRefGoogle Scholar
  13. 13.
    Zhang K, Gao H, Rui Z, Liu P, Yongdan Li, Lin YS (2009) High temperature stability of palladium membranes on porous metal supports with different intermediate layers. Ind Eng Chem Res 48:1880–1886CrossRefGoogle Scholar
  14. 14.
    Mardilovich IP, Engwall E, Ma YH (2002) Dependence of hydrogen flux on the pore size and plating surface topology of asymmetric Pd-porous stainless steel membranes. Desalination 144:85–89CrossRefGoogle Scholar
  15. 15.
    Baker RW (2004) Membrane technology and applications. Wiley, New YorkCrossRefGoogle Scholar
  16. 16.
    Manchester FD, San-Martin A, Pitre JM (2000) H-Pd (hydrogen-palladium). In: Manchester FD (ed) Phase diagrams of binary hydrogen alloy. ASM International, Metals Park, pp 158–181Google Scholar
  17. 17.
    Wicke E, Nernst GH (1964) Phase diagram and thermodynamic behaviour of the palladium-hydrogen and of the palladium-deuterium system at normal temperature; H/D separation effect. Ber Bunsenges Phys Chem 68:224–235Google Scholar
  18. 18.
    Frieske H, Wicke E (1973) Magnetic susceptibility and equilibrium diagram of PdHn. Ber Bunsenges Phys Chem 77(1):48–52CrossRefGoogle Scholar
  19. 19.
    Lasser R, Klatt KH (1983) Solubility of hydrogen isotopes in palladium. Phys Rev B 28:748–758CrossRefGoogle Scholar
  20. 20.
    Lasser R (1985) Isotope dependence of phase boundaries in PdH, PdD, and PdT systems. J Phys Chem Solids 46:33–37CrossRefGoogle Scholar
  21. 21.
    Wicke E, Blaurock J (1987) New experiments on and interpretation of hysteresis effects of Pd-D2 and Pd-H2. J Less-Common Met 130:351–363CrossRefGoogle Scholar
  22. 22.
    Grashoff GJ, Pilkington CE, Corti CW (1983) The purification of hydrogen—a review of the technology emphasizing the current status of palladium membrane diffusion. Plat Met Rev 27(4):157–169Google Scholar
  23. 23.
    Ubbelohde AR (1937) Some properties of the metallic state I—metallic hydrogen and its alloys. Proc R Soc Lond A 159:295–306CrossRefGoogle Scholar
  24. 24.
    Bragg WL, Williams EJ (1934) Effect of thermal agitation on atomic arrangement in alloys. Proc R Soc Lond A 145:699–730CrossRefGoogle Scholar
  25. 25.
    Morreale BD, Ciocco MV, Enick RM, Morsi BI, Howard BH, Cugini AV, Rothenberger KS (2003) The permeability of hydrogen in bulk palladium at elevated temperatures and pressures. J Membr Sci 212:87–97CrossRefGoogle Scholar
  26. 26.
    Holleck GL (1970) Diffusion and solubility of hydrogen in palladium and palladium silver alloys. J Phys Chem 74(3):503–511CrossRefGoogle Scholar
  27. 27.
    Volkl J, Alefeld G (1975) Hydrogen diffusion in metals. In: Nowick AS, Burton JJ (eds) Diffusion in solids, recent developments. Academic Press, New York, pp 232–295Google Scholar
  28. 28.
    Buxbaum RE, Kinney AB (1996) Hydrogen transport through tubular membranes of palladium-coated tantalum and niobium. Ind Eng Chem Res 35:530–537CrossRefGoogle Scholar
  29. 29.
    Wagner C (1932) Kinetics of reaction H2 (gas) _ 2H(dissolved in palladium). Zeitschrift Phys Chem A159:459–469Google Scholar
  30. 30.
    Kay BD, Peden CHF, Goodman DW (1986) Kinetics of hydrogen absorption by Pd(110). Phys Rev B 34(2):817–822Google Scholar
  31. 31.
    Kay BD, Peden CHF, Goodman DW (1986) Kinetics of hydrogen absorption by chemically modified Pd(110). Surf Sci 175(1):215–225CrossRefGoogle Scholar
  32. 32.
    Arstad WMB, Klette H, Walmsley JC, Bredesen R, Venvik H, Holmestad R (2008) Microstructural characterization of self-supported 1.6 μm Pd/Ag membranes. J Membr Sci 310:337–348CrossRefGoogle Scholar
  33. 33.
    Jayaraman V, Lin YS (1995) Synthesis and hydrogen permeation properties of ultrathin palladium–silver alloy membranes. J Membr Sci 104:251–262CrossRefGoogle Scholar
  34. 34.
    Wasa K, Kitabatake M, Adachi H (2004) Thin film materials technology: sputtering of compound materials. William Andrew Inc., New YorkGoogle Scholar
  35. 35.
    Koga T (1994) Off-axis pulsed laser deposition of YBaCuO superconducting thin films. MS Thesis, Royal Institute of Technology, Stockholm, SwedenGoogle Scholar
  36. 36.
    McClanahan D, Laegreid N (1991) Production of thin films by controlled deposition of sputtered material. In: Behrisch R, Wittmaack K (eds) Sputtering by particle bombardment III. Topics in applied physics, vol 64, Springer Verlag, Berlin, p. 339Google Scholar
  37. 37.
    Almeida E (2001) Surface treatments and coatings for metals. A general overview. 2. Coatings: Application processes, environmental conditions during painting and drying, and new tendencies. Ind Eng Chem Res 40:15–20CrossRefGoogle Scholar
  38. 38.
    Pierson HO (1999) Handbook of chemical vapour deposition (CVD). Principles, technology, and applications, 2nd edn. Noyes Publications/William Andrew Publishing, New YorkGoogle Scholar
  39. 39.
    Bredesen R, Klette H (2000) US patent 6.086.729Google Scholar
  40. 40.
    Van Delft YC, Correia LA et al. (2007) Palladium membrane reactors for large scale production of hydrogen. 8th international conference of catalysis in membrane reactors, December 18-21 Kolkata (India)Google Scholar
  41. 41.
    U.S. DOE (2004) Hydrogen separation—technical targets. Office of Fossil Energy Hydrogen from Coal RD&D Plan, June 10, 2004Google Scholar
  42. 42.
    Iaquaniello G, Giacobbe F, Morico B, Cosenza S, Farace A (2008) Membrane reforming in converting natural gas to hydrogen: production costs, part II. Int J Hydrogen Energy 33:6595–6601CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • G. Iaquaniello
    • 1
  • A. Borruto
    • 2
  • E. Lollobattista
    • 3
  • G. Narducci
    • 4
  • D. Katsir
  1. 1.Tecnimont-KT S.p.ARomeItaly
  2. 2.Department of Chemical Engineering, Materials and EnvironmentUniversity of Rome La SapienzaRomeItaly
  3. 3.Processi Innovativi S.r.l.L’AquilaItaly
  4. 4.Acktar Ltd.Kiryat-GatIsrael

Personalised recommendations