Skip to main content

Steam Reforming of Natural Gas in a Reformer and Membrane Modules Test Plant: Plant Design Criteria and Operating Experience

  • Chapter
  • First Online:

Abstract

A staged membrane reactor, called reformer and membrane modules (RMM), test plant with a capacity of 20 Nm3/h hydrogen has been designed and constructed to investigate at an industrial scale level the performance of such innovative architecture. A major benefit of the proposed RMM configuration is the shift of conversion beyond equilibrium value by removing the hydrogen produced at high temperature, thanks to the integration of highly selective Pd-based membranes. By this way, the process can operate at lower thermal level (below 650°C in comparison to 850–950°C needed in tradition plants). Moreover, a noble metal catalyst supported on SiC foam catalyst is used in order to enhance thermal transport inside the catalytic tube. This chapter reports together with preliminary operational data, the plant design criteria, the process scheme, the construction of reformers and membrane units, and the control system implemented to maximize experimental outputs. Four types of Pd-based membranes, three tubular and one planar shaped, are installed in order to compare the performance in terms of hydrogen flux permeated. The ranges of operating conditions investigated (reaction temperatures and pressures, separation temperatures and pressures, flow-rates, and sweeping gas flows) are defined; plant performance and preliminary experimental data are also reported and assessed. The 20 Nm3/h RMM installation will allow the potentialities of selective membrane application in industrial high-temperature chemical processes to be completely understood and constitutes a unique in the world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dittmeyer R, Höllein V, Daub K (2001) Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. J Mol Catal A Chem 173:135–184

    Article  Google Scholar 

  2. Howard BH, Killmeyer RP, Rothenberger KS, Cugioni AV, Morreale BD, Enick RM, Bustamante F (2004) Hydrogen permeance of palladium-copper alloy membranes over a wide range of temperatures and pressures. J Membr Sci 241:207–218

    Article  Google Scholar 

  3. Peachey NM, Snow RC, Dye RC (1996) Composite Pd/Ta metal membranes for hydrogen separation. J Membr Sci 111:123–133

    Article  Google Scholar 

  4. Ozaki T, Zhang Y, Komaki M, Nishimura C (2003) Preparation of palladium-coated V and V-15Ni membranes for hydrogen purification by electroless plating technique. Int J Hydrogen Energy 28:297–302

    Article  Google Scholar 

  5. Tosti S, Bettinali L, Castelli S, Sarto F, Scaglione S, Violante V (2002) Sputtered, electroless and rolled palladium-ceramic membranes. J Membr Sci 196:241–249

    Article  Google Scholar 

  6. Tosti S, Basile A, Bettinali L, Borgognoni F, Chiaravalloti F, Gallucci F (2006) Long-term tests of Pd–Ag thin wall permeator tube. J Membr Sci 284:393–397

    Article  Google Scholar 

  7. De Falco M, Barba D, Cosenza S, Iaquaniello G, Farace A, Giacobbe FG (2009) Reformer and membrane modules plant to optimize natural gas conversion to hydrogen. Special Issue of Asia-Pacific J Chem Eng Membr React DOI:10.1002/apj.241

  8. De Falco M, Barba D, Cosenza S, Iaquaniello G, Marrelli L (2008) Reformer and membrane modules plant powered by a nuclear reactor or by a solar heated molten salts: assessment of the design variables and production cost evaluation. Int J Hydrogen Energy 33:5326–5334

    Article  Google Scholar 

  9. Shu J, Grandjean B, Kaliaguine S (1994) Methane steam reforming in asymmetric Pd and Pd-Ag porous SS membrane reactors. Appl Catal A: Gen 119:305–325

    Article  Google Scholar 

  10. De Falco M, Nardella P, Marrelli L, Di Paola L, Basile A, Gallucci F (2008) The effect of heat flux profile and of other geometric and operating variables in designing industrial membrane steam reformers. Chem Eng J 138:442–451

    Article  Google Scholar 

  11. De Falco M, Di Paola L, Marrelli L, Nardella P (2007) Simulation of large-scale membrane reformers by a two-dimensional model. Chem Eng J 128:115–125

    Article  Google Scholar 

  12. Lin Y, Liu S, Chuang C, Chu Y (2003) Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming: experimental and modelling. Catal Today 82:127–139

    Article  Google Scholar 

  13. Chai M, Machida M, Eguchi K, Arai H (1994) Promotion of hydrogen permeation on a metal-dispersed alumina membrane and its application to a membrane reactor for steam reforming. Appl Catal A: Gen 110:239–250

    Article  Google Scholar 

  14. De Falco M, Iaquaniello G, Cucchiella B, Marrelli L (2009) Syngas: production methods, post treatment and economics. Reformer and membrane modules plant to optimize natural gas conversion to hydrogen. Nova Science Publishers, Newyork. ISBN: 978-1-60741-841-2

    Google Scholar 

  15. Progetto FISR Vettore idrogeno-2002. Rapporto sulle strutture del processo innovativo, issued by Technip-KTI February 2006, available on http://www.fisrproject.com

  16. http://www.hysep.com, Hysep 1308 module

  17. http://www.membranereactor.com

  18. http://www.acktar.com

Download references

Acknowledgment

This work was carried out within the framework of the project “Pure hydrogen from natural gas reforming up to total conversion obtained by integrating chemical reaction and membrane separation,” financially supported by MIUR (FISR DM 17/12/2002)-Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello De Falco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

De Falco, M., Iaquaniello, G., Salladini, A. (2011). Steam Reforming of Natural Gas in a Reformer and Membrane Modules Test Plant: Plant Design Criteria and Operating Experience. In: De De Falco, M., Marrelli, L., Iaquaniello, G. (eds) Membrane Reactors for Hydrogen Production Processes. Springer, London. https://doi.org/10.1007/978-0-85729-151-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-151-6_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-150-9

  • Online ISBN: 978-0-85729-151-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics