Integration of Selective Membranes in Chemical Processes: Benefits and Examples

  • Luigi Marrelli
  • Marcello De Falco
  • Gaetano Iaquaniello


Integration of reaction and separation in a single unit is a powerful tool to increase efficiency and economic advantages of many chemical processes. Reactive distillation, extraction, and adsorption are well-known examples of this technological resource. Recently, a very promising solution is offered by membrane reactors (MRs).


Membrane Reactor Membrane Module Pressure Swing Adsorption Membrane Unit Selective Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sanchez Marcano JG, Tsotsis TT (2002) Catalytic membranes and membrane reactors. Wiley, WeinheimCrossRefGoogle Scholar
  2. 2.
    Drioli E (2004) Membrane reactors. Chem Eng Proc 43:1101–1102CrossRefGoogle Scholar
  3. 3.
    Mardilovich PP, She Y, Rei MH, Ma YH (1998) Defect-free palladium membranes on porous stainless-steel support. AIChE J 44:310CrossRefGoogle Scholar
  4. 4.
    Li A, Liang W, Ronald H (1998) Characterisation and permeation of palladium/stainless steel composite membranes. J Membr Sci 149:259–268CrossRefGoogle Scholar
  5. 5.
    Paglieri SN, Foo KY, Collins JP, Harper-Nixon DL (1999) A new preparation technique for Pd/alumina membranes with enhanced high-temperature stability. Ind Eng Chem Res 38:1925–1936CrossRefGoogle Scholar
  6. 6.
    McCool B, Xomeritakis G, Lin YS (1999) Composition control and hydrogen permeation characteristics of sputter deposited palladium–silver membranes. J Membr Sci 161:67–76CrossRefGoogle Scholar
  7. 7.
    Shu J, Grandjean B, Kaliaguine S (1994) Methane steam reforming in asymmetric Pd and Pd-Ag porous SS membrane reactors. Appl Catal A Gen 119:305–325CrossRefGoogle Scholar
  8. 8.
    Lin Y, Liu S, Chuang C, Chu Y (2003) Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming: experimental and modeling. Catal Today 82:127–139CrossRefGoogle Scholar
  9. 9.
    Madia G, Barbieri G, Drioli E (1999) Theoretical and experimental analysis of methane steam reforming in a membrane reactor. Can J Chem Eng 77:698–706CrossRefGoogle Scholar
  10. 10.
    Chai M, Machida M, Eguchi K, Arai H (1994) Promotion of hydrogen permeation on a metal-dispersed alumina membrane and its application to a membrane reactor for steam reforming. Appl Catal A Gen 110:239–250CrossRefGoogle Scholar
  11. 11.
    Gallucci F, Paturzo L, Basile A (2004) A simulation study of steam reforming of methane in a dense tubular membrane reactor. Int J Hydrogen Energy 29:611–617CrossRefGoogle Scholar
  12. 12.
    Itoh N, Shindo Y, Haraya H, Hakuta T (1988) A membrane reactor using microporous glass for shifting equilibrium of cyclohexane dehydrogenation. J Chem Eng Jpn 21:399–404CrossRefGoogle Scholar
  13. 13.
    Wu JCS, Gerdes TE, Pszczolkowski JL, Bhave RR, Liu PKT (1990) Dehydrogenation of ethylbenzene to styrene using commercial ceramic membranes as reactors. Sep Sci Technol 25:1489–1510CrossRefGoogle Scholar
  14. 14.
    Becker YL, Dixon AG, Moser WR, Ma YH (1993) Modelling of ethylbenzene dehydrogenation in a catalytic membrane reactor. J Membr Sci 77:233–244CrossRefGoogle Scholar
  15. 15.
    Basile A, Drioli E, Santella F, Violante V, Capannelli G, Vitulli G (1995) A study on catalytic membrane reactors for water gas shift reaction. Gas Sep Purif 10:53CrossRefGoogle Scholar
  16. 16.
    Basile A, Criscuoli A, Santella F, Drioli E (1996) Membrane reactor for water gas shift reaction. Gas Sep Purif 10:243CrossRefGoogle Scholar
  17. 17.
    Criscuoli A, Basile A, Drioli E (2000) An analysis of the performance of membrane reactors for the water-gas shift reaction using gas feed mixtures. Catal Today 56:53CrossRefGoogle Scholar
  18. 18.
    Basile A, Chiappetta G, Tosti S, Violante V (2001) Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor. Sep Purif Technol 25:549CrossRefGoogle Scholar
  19. 19.
    Iyoha O, Enick R, Killmeyer R, Howard B, Morreale B, Ciocco M (2007) Wall-catalyzed water-gas shift reaction in multi-tubular Pd, 80wt%Pd-20 wt%Cu membrane reactors at 1173 k. J Membr Sci 298:14CrossRefGoogle Scholar
  20. 20.
    Brunetti A, Barbieri G, Drioli E, Granato T, Lee K-H (2007) A porous stainless steel supported silica membrane for WGS reaction in a catalytic membrane reactor. Chem Eng Sci 62:5621CrossRefGoogle Scholar
  21. 21.
    Giessler S, Jordan K, da Diniz Costa JC, Lu GQM (2003) Performance of hydrophobic and hydrophilic silica membrane reactors for the water gas shift reaction. Sep Purif Technol 33:255CrossRefGoogle Scholar
  22. 22.
    Battersby S, Duke MC, Liu S, Rudolph V, da Diniz Costa JC (2008) Metal doped silica membrane reactor: operational effects of reaction and permeation for the water gas shift reaction. J Membr Sci 316:46CrossRefGoogle Scholar
  23. 23.
    Akamatsu K, Nakane M, Sugawara T, Hattori T, Nakao S (2008) Development of a membrane reactor for decomposing hydrogen sulphide into hydrogen using a high-performance amorphous silica membrane. J Membr Sci 325:16CrossRefGoogle Scholar
  24. 24.
    Galuszka J, Iaquaniello G (2009) Membrane assisted conversion of Hydrogen sulphide-Patent International Application, PCT/CA2009/001562 filed on October 29, 2009Google Scholar
  25. 25.
    De Falco M, Barba D, Cosenza S, Iaquaniello G, Farace A, Giacobbe FG (2009) Reformer and membrane modules plant to optimize natural gas conversion to hydrogen, Special Issue of Asia-Pacific J Chem Eng Mem React. doi: 10.1002/apj.241
  26. 26.
    De Falco M, Barba D, Cosenza S, Iaquaniello G, Marrelli L (2008) Reformer and membrane modules plant powered by a nuclear reactor or by a solar heated molten salts: assessment of the design variables and production cost evaluation. Int J Hydrogen Energy 33:5326–5334CrossRefGoogle Scholar
  27. 27.
    Caravella A, Di Maio FP, Di Renzo A (2010) Computational study of staged membrane reactor configurations for methane steam reforming. I. Optimization of stage lengths. AIChE J 56(1):248–258CrossRefGoogle Scholar
  28. 28.
    Caravella A, Di Maio FP, Di Renzo A (2010) Computational study of staged membrane reactor configurations for methane steam reforming. II. Effect of number of stages and catalyst amount. AIChE J 56(1):259–267CrossRefGoogle Scholar
  29. 29.
    Barba D, Giacobbe F, De Cesaris A, Farace A, Iaquaniello G, Pipino A (2008) Membrane reforming in converting natural gas to hydrogen (part one). Int J Hydrogen Energy 33:3700–3709CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Luigi Marrelli
    • 1
  • Marcello De Falco
    • 2
  • Gaetano Iaquaniello
  1. 1.Faculty of EngineeringUniversity Campus Bio-Medico of RomeRomeItaly
  2. 2.Tecnimont KTRomeItaly

Personalised recommendations