Skip to main content

Grid Security: Problem Statement

  • Chapter
  • First Online:
Transmission Grid Security

Part of the book series: Power Systems ((POWSYS))

Abstract

Chapter 2 presents the basic properties of meshed transmission grids, concentrating especially on the reliability. The concepts of N − 1 criterion, adequacy, and security are presented. Different substation schemes are addressed.

The dynamics of the power systems after faults are briefly described. The PSA approach, used in this book, is presented, and the motivation to use it for reliability analyses for transmission systems is given. The state of the art in the field of the reliability assessments of power systems is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Maybe it is worth mentioning that often dependability is the general term describing reliability. IEC standard Dependability and quality of service uses dependability as a term of collective availability performance but points out that it is used only for general description in non-quantitative terms (IEC 60050-191).

References

  1. Taylor CW (1994) Power system voltage stability. McGraw-Hill. ISBN 0-07-113708-4

    Google Scholar 

  2. Hortal J, Izquierdo JM (1996) Application of the integrated safety assessment methodology to the protection of electric systems. Reliab Eng and Syst Saf 52(3):315–326

    Article  Google Scholar 

  3. Rasmussen NC (1975) Reactor safety study. An assessment of accident risks in U.S. commercial nuclear power plants. Rep numbers WASH-1400-MR (NUREG-75/014). http://www.osti.gov/energycitations/purl.cover.jsp?purl=/7134131-wKhXcG/. Accessed 21 April 2010

  4. IEEE/CIGRE (2004) Definition and classification of power system stability. IEEE Trans Power Syst 19(3):1387–1401

    Article  Google Scholar 

  5. Allan R, Billinton R (1992) Power system reliability and its assessment I. Background and generating capacity. Power Eng J 6(4):191–196

    Article  Google Scholar 

  6. Billinton R, Allan RN (1988) Reliability assessment of large electric power systems. Kluwer Academic Publishers. ISBN 0-89838-266-1

    Google Scholar 

  7. CEER (2008) 4th Benchmarking report on quality of electricity supply. Ref: C08-EQS-24-04. http://www.energy-regulators.eu/portal/page/portal/EER_HOME/EER_PUBLICATIONS/CEER_ERGEG_PAPERS/Electricity/2008. Accessed 13 May 2010

  8. IEEE PES CAMS Task Force (2008) Initial review of methods for cascading failure analysis in electric power transmission systems. In: Task force on understanding, prediction, mitigation and restoration of cascading failures at IEEE Power Eng Soc Gen Meet, Pittsburgh, PA, USA, July 2008

    Google Scholar 

  9. Billinton R, Ringlee RJ, Wood AJ (1973) Power system reliability calculations. MIT Press. ISBN 0-262-02098-X

    Google Scholar 

  10. Billinton R, Allan RN (1984) Power system reliability in perspective. Electron Power 30(3):231–236

    Article  Google Scholar 

  11. Allan R, Billinton R (2000) Probabilistic assessment of power systems. Proc IEEE 88(2):140–162

    Article  Google Scholar 

  12. Billinton R, Khan E (1992) A security based approach to composite power system reliability evaluation. IEEE Trans Power Syst 7(1):65–72

    Article  Google Scholar 

  13. Nordel (2007) Nordic Grid Code 2007. http://www.entsoe.eu/index.php?id=62. Accessed 13 May 2010

  14. Billinton R, Kuruganty PRS (1979) Probabilistic evaluation of transient stability in a multimachine power system. Proc Inst Electr Eng 126(4):321–326

    Article  Google Scholar 

  15. Billinton R, Kuruganty PRS (1980) A probabilistic index for transient stability. IEEE Trans Power Appar Syst PAS-99(1):195–206

    Article  Google Scholar 

  16. Billinton R, Kuruganty PRS (1981) Probabilistic assessment of transient stability in a practical multimachine system. IEEE Trans Power Appar Syst PAS-100(7):3634–3641

    Article  Google Scholar 

  17. Kuruganty PRS, Billinton R (1979) An approximate method for probabilistic assessment of transient stability. IEEE Trans Reliab R 28(3):255–258

    Article  Google Scholar 

  18. Anderson PM, Bose A (1983) A probabilistic approach to power system stability analysis. IEEE Trans Power Appar Syst PAS-102(8):2430–2439

    Article  Google Scholar 

  19. Anders GJ (1990) Probability concepts in electric power systems. Wiley. ISBN 0-471-50229-4

    Google Scholar 

  20. Khan ME (1998) Bulk Load Points Reliability Evaluation Using a Security Based Model. IEEE Trans on Power Syst 13(2):456–463

    Article  Google Scholar 

  21. Rei AM, da Silva AML, Jardim JL, de Oliveira Mello JC (2000) Static and Dynamic Aspects in Bulk Power System Reliability Evaluations. IEEE Trans on Power Syst 15(1):189–195

    Article  Google Scholar 

  22. Leite da Silva AM, Endrenyi J, Wang L (1993) Integrated Treatment of Adequancy and Security in Bulk Power System Reliability Evaluation. IEEE Trans on Applied Superconduct 3(1):274–285

    Google Scholar 

  23. Miki T, Okitsu D, Kushida M, Ogino T (1999) Development of a Hybrid Type Assessment Method for Power System Dynamic Reliability. IEEE Int Conf on Syst. In Proceedings: Man and Cybern 1999, SMC '99 Conf Proc 1:968–973

    Google Scholar 

  24. Phadke AG, Horowitz SH, Thorp JS (1995) Anatomy of Power System blackouts and Preventive Strategies by rational supervision and control of protection systems. ORNL/Sub/89-SD630C/1, A rep for the Power Syst Technol Program, Energy Division Oak Ridge Natl Lab

    Google Scholar 

  25. Nedic D, Dobson I, Kirschen D, Carreras B, Lynch V (2006) Criticality in a cascading failure blackout model. Electric Power and Energy Syst 28:627–633

    Article  Google Scholar 

  26. Rios MA, Kirschen DS, Jayaweera D, Nedic DP, Allan RN (2002) Value of Security: Modeling Time-Dependent Phenomena and Weather Conditions. IEEE Trans on Power Syst 17(3):543–548

    Google Scholar 

  27. Dobson (2007) Where is the edge for cascading failure? Challenges and opportunities for quantifying blackout risk. In: IEEE Power Eng Soc Gen Meet, 24–28 June 2007, USA

    Google Scholar 

  28. Kirschen DS, Jayaweera D (2007) Comparison of risk-based and deterministic security assessments. IET Gener Transm Distrib 1(4):527–533

    Article  Google Scholar 

  29. Doorman GL, Kjølle GH, Uhlen K et al (2004) Vulnerability of the Nordic power system. Report to the Nordic Counc of Ministers, TR A5962. http://193.88.185.141/Graphics/Energiforsyning/Forsyningssikkerhed/Elforsyningssikkerhed/VulnarabilityoftheNordicPowerSystem.pdf. Accessed 13 May 2010

  30. Doorman GL, Uhlen K, Kjølle et al (2006) Vulnerability analysis of the Nordic power system. IEEE Trans Power Syst 21(1):401–410

    Article  Google Scholar 

  31. Chen Q (2004) The probability, identification, and prevention of rare events in power systems. PhD dissertation, Iowa State University, Ames, Iowa. http://www.pserc.org/cgi-pserc/getbig/publicatio/2004public/qimingchen_phd_dissertation_on_cascading.pdf. Accessed 13 May 2010

  32. Chen Q, McCalley JD (2005) Identifying high risk N-k contingencies for online security assessment. IEEE Trans Power Syst 20(2):823–834

    Article  Google Scholar 

  33. Levi VA, Nahman JM, Nedic DP (2001) Security modeling for power system reliability evaluation. IEEE Trans Power Syst 16(1):29–37

    Article  Google Scholar 

  34. Khan ME, Billinton R (1992) A hybrid model for quantifying different operating states of composite power systems. IEEE Trans Power Syst 7(1):187–193

    Article  Google Scholar 

  35. Grigg C, Wong P, Albrecht P et al (1999) The IEEE reliability test system—1996. IEEE Trans Power Syst 14(3):1010–1020

    Article  Google Scholar 

  36. UCTE (2007) Final report—system disturbance on 4 November 2006. http://www.entsoe.eu/index.php?id=59. Accessed 13 May 2010

  37. UCTE (2004) Final Report of the investigation committee on the 28 September 2003 Blackout in Italy. http://www.entsoe.eu/index.php?id=59. Accessed 13 May 2010

  38. U.S.–Canada Power System Outage Task Force (2004) Final report on the August 14th Blackout in the United States and Canada: causes and recommendations. https://reports.energy.gov/. Accessed 13 May 2010

  39. Pottonen L (2005) A method for the probabilistic security analysis of transmission grids. A doctoral dissertation, Helsinki University of Technology, 951-22-7591-0, 951-22-7592-9 http://lib.tkk.fi/Diss/2005/isbn9512275929/. Accessed 29 June 2010

  40. Haarla L, Pulkkinen U, Koskinen M, Jyrinsalo J (2008) A method for analysing the reliability of a transmission grid. Reliab Eng Syst Saf 93(2):277–287

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liisa Haarla .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Haarla, L., Koskinen, M., Hirvonen, R., Labeau, PE. (2011). Grid Security: Problem Statement. In: Transmission Grid Security. Power Systems. Springer, London. https://doi.org/10.1007/978-0-85729-145-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-145-5_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-144-8

  • Online ISBN: 978-0-85729-145-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics