Skip to main content

Electric Vehicles in Hybrid Configuration

  • Chapter
  • First Online:
Hydrogen Fuel Cells for Road Vehicles

Part of the book series: Green Energy and Technology ((GREEN))

  • 4530 Accesses

Abstract

In this chapter, an analysis of fuel cell power trains is effected starting from the examination of a generic configuration of battery powered electric vehicles, and evidencing the principle of operation and main characteristics of its components (electric machines, drives, power electronics and control techniques). Different electric energy storage systems are presented (electrochemical batteries, flywheels and super capacitors), underlining the main properties for automotive applications. The electrical and mechanical connections of different hybrid electric vehicles are examined and discussed, in particular thermal electric hybrids, vehicles using photovoltaic panels, flywheels and super capacitors, and hydrogen fuel cell vehicles. Different hybrid configurations suitable for fuel cell power trains are closely analyzed, evidencing the key role of storage systems for the best performance of the fuel cell system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guzzella L, Sciarretta A (2005) Vehicle propulsion systems. Springer, Berlin

    Google Scholar 

  2. Maggetto G, Van Mierlo J (2001) Electric vehicles, hybrid vehicles and fuel cell electric vehicles: state of the art and perspectives. Ann Chim Shi Mater 26(4):9–26

    Article  Google Scholar 

  3. Larminie J, Lowry J (2003) Electric vehicle technology explained. Wiley, Chichester

    Book  Google Scholar 

  4. Westbrook MH (2001) The electric and hybrid electric car. Society of Automotive Engineers, Warrendale

    Google Scholar 

  5. Dhameja S (2002) Electric vehicle battery systems. Newnes, Boston

    Google Scholar 

  6. Fitzgerald AE, Kinsley C (2003) Electric machinery. McGraw-Hill, New York

    Google Scholar 

  7. Muller G (1966) Elektrische Maschinen. Verlag-Technik, Berlin

    Google Scholar 

  8. Richter (1953) Elektrische Maschinen, vol I, II, III. Verlag-Birkhauser, Basel

    Google Scholar 

  9. Vas P (1992) Electrical machines and drives. Claredon Press, Oxford

    Google Scholar 

  10. Langsdorf AS (1955) Theory of alternating-current machinery. McGraw-Hill, New York

    Google Scholar 

  11. West JGW (1994) DC, induction, reluctance and PM motors for electric vehicles. Power Eng J 8(2):77–88

    Article  Google Scholar 

  12. Moan N, Undeland TM, Robbins WP (2003) Power electronics: converters, applications, and design, 3rd edn. Wiley, New York

    Google Scholar 

  13. Linden D, Reddy TB (2001) Handbook of batteries, 3rd edn. McGraw-Hill Handbooks, New York

    Google Scholar 

  14. Vinal GW (1951) Storage batteries. Wiley, New York

    Google Scholar 

  15. Keusch VP, Baran J, Pohl JP (2001) Messungen zum Laden und Entladen eines Modell-Bleiakkumulators. Unterricht Chemie 66:1–5

    Google Scholar 

  16. Shukla AK, Venugopalan S, Hariprakash B (2001) Nickel-based rechargeable batteries. J Power Sources 100:125–148

    Article  Google Scholar 

  17. Morioka Y, Narukawa S, Itou T (2001) State-of-the-art of alkaline rechargeable batteries. J Power Sources 100:107–116

    Article  Google Scholar 

  18. Taniguchi A, Fujioka N, Ikoma M, Ohta A (2001) Development of nickel/metal-hydride batteries for EVs and HEVs. J Power Sources 100:117–124

    Article  Google Scholar 

  19. Sudworth JL (2001) The sodium/nickel chloride (ZEBRA) battery. J Power Sources 100:149–163

    Article  Google Scholar 

  20. Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106

    Article  Google Scholar 

  21. Scrosati B, Croce F, Panero S (2001) Progress in lithium polymer battery R&D. J Power Sources 100:93–100

    Article  Google Scholar 

  22. Kuribayashi I, Yokoyama M, Yamashita M (1995) Battery characteristics with various carbonaceous materials. J Power Sources 54:1–5

    Article  Google Scholar 

  23. Peng B, Chen J (2009) Functional materials with high-efficiency energy storage and conversion for battery and fuel cell. Coordin Chem Rev 253:2805–2813

    Article  Google Scholar 

  24. Ma H, Cheng F, Chen JY, Zhao JZ, Li CS, Tao ZL, Liang J (2007) Nest-like silicon nanospheres for high-capacity lithium storage. Adv Mater 19:4067–4070

    Article  Google Scholar 

  25. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    Article  Google Scholar 

  26. Ng SH, Wang J, Wexler D, Konstantinov K, Guo ZP, Liu HK (2006) Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew Chem Int Ed 46:6896–6899

    Article  Google Scholar 

  27. Hassoun J, Panero S, Simon P, Taberna PL, Scrosati B (2007) High rate, long life Ni-Sn nanostructured electrodes for lithium ion batteries. Adv Mater 19:1632–1635

    Article  Google Scholar 

  28. Oumellal Y, Rougier A, Nazri GA, Tarascon JM, Aymard L (2008) Metal hydrides for lithium-ion batteries. Nat Mater 7:916–921

    Article  Google Scholar 

  29. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954

    Article  Google Scholar 

  30. Patoux S, Daniel L, Bourbon C, Lignier H, Pagano C, Le Cras F, Jouanneau S, Partinet S (2009) J Power Sources 189:344–352

    Google Scholar 

  31. Katiyar RK, Singhal R, Asmar K, Valentin R, Katiyar RS (2009) High voltage spinel cathode materials for high energy density and high rate capability Li ion rechargeable batteries. J Power Sources 194:526–530

    Article  Google Scholar 

  32. Gao J, Manthiram A (2009) Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. J Power Sources 191:644–647

    Article  Google Scholar 

  33. Automotive Engineering on line. NiMh battery has high-volume future. http://www.sae.org/mags/AEI/7552. Accessed 09 February 2010

  34. Lee CW, Sathiyanarayanan K, Eom SW, Yun MS (2006) Novel alloys to improve the electrochemical behaviour of zinc anodes for zinc/air battery. J Power Sources 160:1436–1441

    Article  Google Scholar 

  35. Yang S, Knickle H (2002) Design and analysis of aluminium/air battery system for electric vehicles. J Power Sources 112:162–173

    Article  Google Scholar 

  36. Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110:1–10

    Article  MATH  Google Scholar 

  37. Han B, Liang G (2006) Neutral electrolyte aluminium air battery with open configuration. Rare Met 25:360–363

    Article  Google Scholar 

  38. Tang Y, Lu L, Roesky HW, Wang L, Huang B (2004) The effect of zinc on the aluminium anode of the aluminium-air battery. J Power Sources 138:313–318

    Article  Google Scholar 

  39. Alonso M, Finn EJ (1980) Fundamental university physics—mechanics and thermodynamics, vol 1, 2nd edn. Addison Wesley Publishing Company Inc., California

    Google Scholar 

  40. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological application. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  41. Jung DY, Kim YH, Kim SW, Lee SH (2003) Development of ultracapacitor modules for 42-V automotive electrical systems. J Power Sources 114:366–373

    Article  Google Scholar 

  42. Yoo H, Sul SK, Park Y, Jeong J (2008) System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries. IEEE T Ind Appl 44:108–114

    Article  Google Scholar 

  43. Mishima T, Hiraki E, Yamamoto K, Tanaka T (2006) Bidirectional DC-DC converter for supercapacitor-linked power interface in advanced electric vehicles. IEEJ T Ind Appl 126:529–530

    Google Scholar 

  44. Mir L, Etxeberria-Otadui I, De Arenaza IP, Sarasola I, Nieva T (2009) A supercapacitor based light rail vehicle: System design and operations modes. In: Proceedings of the IEEE energy conversion congress and exposition, San Jose CA, pp 1632–1639. ISBN: 978-142442893-9

    Google Scholar 

  45. Buchi F, Tsukada A, Rodutz P, Garcia O, Ruge M, Kotz R, Bartschi M, Dietrich P (2002) Fuel cell supercap hybrid electric power train. In: Proceedings of European fuel cell forum conference, Lucerne, pp 218–231

    Google Scholar 

  46. Thounthong P, Raël S, Davat B (2006) Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle. J Power Sources 158:806–814

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Corbo .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Corbo, P., Migliardini, F., Veneri, O. (2011). Electric Vehicles in Hybrid Configuration. In: Hydrogen Fuel Cells for Road Vehicles. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-136-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-136-3_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-135-6

  • Online ISBN: 978-0-85729-136-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics