Electric Vehicles in Hybrid Configuration

  • Pasquale Corbo
  • Fortunato Migliardini
  • Ottorino Veneri
Part of the Green Energy and Technology book series (GREEN)


In this chapter, an analysis of fuel cell power trains is effected starting from the examination of a generic configuration of battery powered electric vehicles, and evidencing the principle of operation and main characteristics of its components (electric machines, drives, power electronics and control techniques). Different electric energy storage systems are presented (electrochemical batteries, flywheels and super capacitors), underlining the main properties for automotive applications. The electrical and mechanical connections of different hybrid electric vehicles are examined and discussed, in particular thermal electric hybrids, vehicles using photovoltaic panels, flywheels and super capacitors, and hydrogen fuel cell vehicles. Different hybrid configurations suitable for fuel cell power trains are closely analyzed, evidencing the key role of storage systems for the best performance of the fuel cell system.


Electric Vehicle Electric Drive Energy Storage System Hybrid Vehicle Battery Pack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Guzzella L, Sciarretta A (2005) Vehicle propulsion systems. Springer, BerlinGoogle Scholar
  2. 2.
    Maggetto G, Van Mierlo J (2001) Electric vehicles, hybrid vehicles and fuel cell electric vehicles: state of the art and perspectives. Ann Chim Shi Mater 26(4):9–26CrossRefGoogle Scholar
  3. 3.
    Larminie J, Lowry J (2003) Electric vehicle technology explained. Wiley, ChichesterCrossRefGoogle Scholar
  4. 4.
    Westbrook MH (2001) The electric and hybrid electric car. Society of Automotive Engineers, WarrendaleGoogle Scholar
  5. 5.
    Dhameja S (2002) Electric vehicle battery systems. Newnes, BostonGoogle Scholar
  6. 6.
    Fitzgerald AE, Kinsley C (2003) Electric machinery. McGraw-Hill, New YorkGoogle Scholar
  7. 7.
    Muller G (1966) Elektrische Maschinen. Verlag-Technik, BerlinGoogle Scholar
  8. 8.
    Richter (1953) Elektrische Maschinen, vol I, II, III. Verlag-Birkhauser, BaselGoogle Scholar
  9. 9.
    Vas P (1992) Electrical machines and drives. Claredon Press, OxfordGoogle Scholar
  10. 10.
    Langsdorf AS (1955) Theory of alternating-current machinery. McGraw-Hill, New YorkGoogle Scholar
  11. 11.
    West JGW (1994) DC, induction, reluctance and PM motors for electric vehicles. Power Eng J 8(2):77–88CrossRefGoogle Scholar
  12. 12.
    Moan N, Undeland TM, Robbins WP (2003) Power electronics: converters, applications, and design, 3rd edn. Wiley, New YorkGoogle Scholar
  13. 13.
    Linden D, Reddy TB (2001) Handbook of batteries, 3rd edn. McGraw-Hill Handbooks, New YorkGoogle Scholar
  14. 14.
    Vinal GW (1951) Storage batteries. Wiley, New YorkGoogle Scholar
  15. 15.
    Keusch VP, Baran J, Pohl JP (2001) Messungen zum Laden und Entladen eines Modell-Bleiakkumulators. Unterricht Chemie 66:1–5Google Scholar
  16. 16.
    Shukla AK, Venugopalan S, Hariprakash B (2001) Nickel-based rechargeable batteries. J Power Sources 100:125–148CrossRefGoogle Scholar
  17. 17.
    Morioka Y, Narukawa S, Itou T (2001) State-of-the-art of alkaline rechargeable batteries. J Power Sources 100:107–116CrossRefGoogle Scholar
  18. 18.
    Taniguchi A, Fujioka N, Ikoma M, Ohta A (2001) Development of nickel/metal-hydride batteries for EVs and HEVs. J Power Sources 100:117–124CrossRefGoogle Scholar
  19. 19.
    Sudworth JL (2001) The sodium/nickel chloride (ZEBRA) battery. J Power Sources 100:149–163CrossRefGoogle Scholar
  20. 20.
    Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106CrossRefGoogle Scholar
  21. 21.
    Scrosati B, Croce F, Panero S (2001) Progress in lithium polymer battery R&D. J Power Sources 100:93–100CrossRefGoogle Scholar
  22. 22.
    Kuribayashi I, Yokoyama M, Yamashita M (1995) Battery characteristics with various carbonaceous materials. J Power Sources 54:1–5CrossRefGoogle Scholar
  23. 23.
    Peng B, Chen J (2009) Functional materials with high-efficiency energy storage and conversion for battery and fuel cell. Coordin Chem Rev 253:2805–2813CrossRefGoogle Scholar
  24. 24.
    Ma H, Cheng F, Chen JY, Zhao JZ, Li CS, Tao ZL, Liang J (2007) Nest-like silicon nanospheres for high-capacity lithium storage. Adv Mater 19:4067–4070CrossRefGoogle Scholar
  25. 25.
    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRefGoogle Scholar
  26. 26.
    Ng SH, Wang J, Wexler D, Konstantinov K, Guo ZP, Liu HK (2006) Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew Chem Int Ed 46:6896–6899CrossRefGoogle Scholar
  27. 27.
    Hassoun J, Panero S, Simon P, Taberna PL, Scrosati B (2007) High rate, long life Ni-Sn nanostructured electrodes for lithium ion batteries. Adv Mater 19:1632–1635CrossRefGoogle Scholar
  28. 28.
    Oumellal Y, Rougier A, Nazri GA, Tarascon JM, Aymard L (2008) Metal hydrides for lithium-ion batteries. Nat Mater 7:916–921CrossRefGoogle Scholar
  29. 29.
    Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954CrossRefGoogle Scholar
  30. 30.
    Patoux S, Daniel L, Bourbon C, Lignier H, Pagano C, Le Cras F, Jouanneau S, Partinet S (2009) J Power Sources 189:344–352Google Scholar
  31. 31.
    Katiyar RK, Singhal R, Asmar K, Valentin R, Katiyar RS (2009) High voltage spinel cathode materials for high energy density and high rate capability Li ion rechargeable batteries. J Power Sources 194:526–530CrossRefGoogle Scholar
  32. 32.
    Gao J, Manthiram A (2009) Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. J Power Sources 191:644–647CrossRefGoogle Scholar
  33. 33.
    Automotive Engineering on line. NiMh battery has high-volume future. http://www.sae.org/mags/AEI/7552. Accessed 09 February 2010
  34. 34.
    Lee CW, Sathiyanarayanan K, Eom SW, Yun MS (2006) Novel alloys to improve the electrochemical behaviour of zinc anodes for zinc/air battery. J Power Sources 160:1436–1441CrossRefGoogle Scholar
  35. 35.
    Yang S, Knickle H (2002) Design and analysis of aluminium/air battery system for electric vehicles. J Power Sources 112:162–173CrossRefGoogle Scholar
  36. 36.
    Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110:1–10MATHCrossRefGoogle Scholar
  37. 37.
    Han B, Liang G (2006) Neutral electrolyte aluminium air battery with open configuration. Rare Met 25:360–363CrossRefGoogle Scholar
  38. 38.
    Tang Y, Lu L, Roesky HW, Wang L, Huang B (2004) The effect of zinc on the aluminium anode of the aluminium-air battery. J Power Sources 138:313–318CrossRefGoogle Scholar
  39. 39.
    Alonso M, Finn EJ (1980) Fundamental university physics—mechanics and thermodynamics, vol 1, 2nd edn. Addison Wesley Publishing Company Inc., CaliforniaGoogle Scholar
  40. 40.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological application. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  41. 41.
    Jung DY, Kim YH, Kim SW, Lee SH (2003) Development of ultracapacitor modules for 42-V automotive electrical systems. J Power Sources 114:366–373CrossRefGoogle Scholar
  42. 42.
    Yoo H, Sul SK, Park Y, Jeong J (2008) System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries. IEEE T Ind Appl 44:108–114CrossRefGoogle Scholar
  43. 43.
    Mishima T, Hiraki E, Yamamoto K, Tanaka T (2006) Bidirectional DC-DC converter for supercapacitor-linked power interface in advanced electric vehicles. IEEJ T Ind Appl 126:529–530Google Scholar
  44. 44.
    Mir L, Etxeberria-Otadui I, De Arenaza IP, Sarasola I, Nieva T (2009) A supercapacitor based light rail vehicle: System design and operations modes. In: Proceedings of the IEEE energy conversion congress and exposition, San Jose CA, pp 1632–1639. ISBN: 978-142442893-9Google Scholar
  45. 45.
    Buchi F, Tsukada A, Rodutz P, Garcia O, Ruge M, Kotz R, Bartschi M, Dietrich P (2002) Fuel cell supercap hybrid electric power train. In: Proceedings of European fuel cell forum conference, Lucerne, pp 218–231Google Scholar
  46. 46.
    Thounthong P, Raël S, Davat B (2006) Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle. J Power Sources 158:806–814CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited  2011

Authors and Affiliations

  • Pasquale Corbo
    • 1
  • Fortunato Migliardini
    • 1
  • Ottorino Veneri
    • 1
  1. 1.Istituto Motori of Italian National Research CouncilNaplesItaly

Personalised recommendations