Fuel Cells for Automotive Applications

  • Pasquale Corbo
  • Fortunato Migliardini
  • Ottorino Veneri
Part of the Green Energy and Technology book series (GREEN)


The main properties of the fuel cells based on polymeric electrolyte are described in this chapter explaining the technical reasons that make them more suitable to automotive applications in comparison with other types of fuel cells. A preliminary discussion on basic thermodynamic and kinetic concepts necessary for the comprehension of fuel cell electrochemistry is presented before describing details and problems of the different components of a polymeric electrolyte fuel cell: membrane electrolyte, electrocatalysts, gas diffusion layers, bipolar plates. The effect of different operative parameters (membrane humidity grade, reactant pressure, stack temperature, stoichiometric ratio) on stack performance is experimentally analyzed, evidencing the kinetic limitations which cause efficiency losses. A brief discussion on stack durability issues concludes the chapter.


Fuel Cell Proton Conductivity Catalyst Layer Proton Exchange Membrane Fuel Cell External Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mahan BM (1968) University chemistry. Addison-Wesley Publishing Company, ReadingGoogle Scholar
  2. 2.
    Lange NA (1967) Handbook of chemistry. McGraw Hill, New YorkGoogle Scholar
  3. 3.
    Zemansky MW, Abbott MM, Van Hess HC (1975) Basic engineering thermodynamics. McGraw Hill, New YorkGoogle Scholar
  4. 4.
    Lide DR, Frederikse HPR (eds) (1996) CRC handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Atkins P, de Paula J (2002) Physical chemistry. Oxford University Press, OxfordGoogle Scholar
  6. 6.
    Weaver G (ed) (2002) World fuel cells—an industry profile with market prospect to 2010. Elsevier Advanced Technology, Kidlington, OxfordGoogle Scholar
  7. 7.
    Kamarudin SK, Achmad F, Daud WRW (2009) Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrogen Energ 34:6902–6916CrossRefGoogle Scholar
  8. 8.
    Gottesfeld S, Pafford J (1988) A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures. J Electrochem Soc 135(10):2651–2652CrossRefGoogle Scholar
  9. 9.
    Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membrane Sci 185:29–39CrossRefGoogle Scholar
  10. 10.
    Zawodzinski TA Jr, Spronger TE, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S (1993) A comparative study of water uptake by and transport through ionomeric fuel cell membranes. J Electrochem Soc 140(7):1981–1985CrossRefGoogle Scholar
  11. 11.
    Chen C, Fuller TF (2009) The effect of humidity on the degradation of Nafion® membrane. Polym Degrad Stabil 94:1436–1447CrossRefGoogle Scholar
  12. 12.
    Jiang R, Kunz HR, Fenton JM (2005) Electrochemical oxidation of H2 and H2/CO mixtures in higher temperature (T cell > 100°C) proton exchange membrane fuel cells: electrochemical impedance spectroscopy. J Electrochem Soc 152(7):A1329–A1340CrossRefGoogle Scholar
  13. 13.
    Li Q, He RH, Gao JA, Jensen JO, Bjerrum NJ (2003) The CO poisoning effect in PEMFCs operational at temperatures up to 200°C. J Electrochem Soc 150(12):A1599–A1605CrossRefGoogle Scholar
  14. 14.
    Das SK, Reis A, Berry KJ (2009) Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cells. J Power Sources 193:691–698CrossRefGoogle Scholar
  15. 15.
    Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CJ, Kocha SS, Miller DP, Mittelsteadt CK, Xie T, Yan SG, Yu PT (2005) Two fuel cell cars in every garage? Electrochem Soc Interface 14(3):24–35Google Scholar
  16. 16.
    Hogarth WHJ, da Costa JCD, Lu GQ (2005) Solid acid membranes for high temperature (>140°C) proton exchange membrane fuel cells. J Power Sources 142(1–2):223–237CrossRefGoogle Scholar
  17. 17.
    Sone Y, Ekdunge P, Simonsson D (1996) Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method. J Electrochem Soc 143(4):1254–1259CrossRefGoogle Scholar
  18. 18.
    Peinemann KV, Nunes SP (eds) (2008) Membranes for energy conversion. Wiley-VCH Verlag Gmbh & Co. KGaA, WeinheimGoogle Scholar
  19. 19.
    Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly AB (2001) Approaches and technical challenges to high temperature operation of proton exchange membranes fuel cells. J Power Sources 103:1–9CrossRefGoogle Scholar
  20. 20.
    Santiago EI, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC (2009) Nafion-TiO2 hybrid electrolytes for stable operation of PEM fuel cell at high temperature. Electrochim Acta 54:4111–4117CrossRefGoogle Scholar
  21. 21.
    Harrison WL, Hickner MA, Kim YS, MaGrath JE (2005) Poly(arylene ether sulphone) copolymers and related systems from disulphonated monomer building blocks: synthesis, characterization and performance—a topical review. Fuel Cells 5:201–212CrossRefGoogle Scholar
  22. 22.
    Herring AM (2006) Inorganic polymer composite membranes for proton exchange membrane fuel cells. J Macromol Sci C 46:245–296Google Scholar
  23. 23.
    Quinfeng L, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:339–477Google Scholar
  24. 24.
    Wainright JS, Wang JT, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles—a new polymer electrolyte. J Electrochem Soc 142:L121–L123CrossRefGoogle Scholar
  25. 25.
    Schuster M, Rager T, Noda A, Kreuer KD, Majer J (2005) About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulphonic acid, phosphonic acid and imidazole functionalized model compounds. Fuel Cells 5:355–365CrossRefGoogle Scholar
  26. 26.
    Peng J, Shin JY, Song TW (2008) Transient response of high temperature PEM fuel cell. J Power Sources 179:220–231CrossRefGoogle Scholar
  27. 27.
    Sakai T, Takeraka H, Torikai E (1986) Gas diffusion in the dried and hydrated Nafions. J Electrochem Soc 133(1):88–92CrossRefGoogle Scholar
  28. 28.
    Paganin VA, Ticianelli EA, Gonzales ER (1996) Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. J Appl Electrochem 26:297–304CrossRefGoogle Scholar
  29. 29.
    Sasikumar G, Ihm JW, Ryu H (2004) Dependance of optimum Nafion content in catalyst layer on platinum loading. J Power Sources 132(1–2):11–17CrossRefGoogle Scholar
  30. 30.
    Carmo M, Roepke T, Roth C, dos Santos AM, Poco JGR, Linardi M (2009) A novel electrocatalyst support with proton conductive properties for polymer electrolyte membrane fuel cell applications. J Power Sources 191:330–337CrossRefGoogle Scholar
  31. 31.
    Wang J, Yin G, Shao Y, Zhang S, Wang Z, Gao Y (2007) Effect of carbon black support corrosion on the durability of Pt/C catalyst. J Power Sources 171:331–339CrossRefGoogle Scholar
  32. 32.
    Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C (2008) Carbon support oxidation in PEM fuel cell cathodes. J Power Sources 176:444–451CrossRefGoogle Scholar
  33. 33.
    Lim KH, Oh HS, Kim H (2009) Electrochem Commun 11:1131–1134CrossRefGoogle Scholar
  34. 34.
    Barbir F (2005) PEM fuel cells. Theory and Practice. Elsevier Academic Press, BurlingtonGoogle Scholar
  35. 35.
    Bevers D, Rogers R, Bradke M (1996) Examination of the influence of PTFE coating on the properties of carbon paper in polymer electrolyte fuel cells. J Power Sources 63:193–201CrossRefGoogle Scholar
  36. 36.
    Lim C, Wang CY (2004) Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell. Electrochim Acta 49:4149–4156CrossRefGoogle Scholar
  37. 37.
    Park S, Popov BN (2009) Effect of cathode GDL characteristics on mass transport in PEM fuel cells. Fuel 88:2068–2073CrossRefGoogle Scholar
  38. 38.
    Cindrella L, Kannan AM, Ahmad R, Thommes M (2009) Surface modification of gas diffusion layers by inorganic nanomaterials for performance enhancement of proton exchange membrane fuel cells at low RH conditions. Int J Hydrogen Energ 34:6377–6383CrossRefGoogle Scholar
  39. 39.
    Kannan AM, Kanagala P, Veedu V (2009) Development of carbon nanotubes based gas diffusion layers by in situ chemical vapour deposition process for proton exchange membrane fuel cells. J Power Sources 192:297–303CrossRefGoogle Scholar
  40. 40.
    Li X, Sabir I (2005) Review of bipolar plates in PEM fuel cells: flow-field designs. Int J Hydrogen Energ 30:359–371CrossRefGoogle Scholar
  41. 41.
    Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 114:32–53CrossRefGoogle Scholar
  42. 42.
    Wang SH, Peng J, Lui WB (2006) Surface modification and development of titanium bipolar plates for PEM fuel cells. J Power Sources 160:485–489CrossRefGoogle Scholar
  43. 43.
    Abo El, Enin SA, Abdel-Salam OE, El-Abd H, Amin AM (2008) New electroplated aluminum bipolar plate for PEM fuel cells. J Power Sources 177:131–136CrossRefGoogle Scholar
  44. 44.
    Feng K, Shen Y, Sun H, Liu D, An Q, Cai X, Chu PK (2009) Conductive amorphous carbon-coated 316L stainless steel as bipolar plates in polymer electrolyte membrane fuel cells. Int J Hydrogen Energ 34:6771–6777CrossRefGoogle Scholar
  45. 45.
    Corbo P, Corcione FE, Migliardini F, Veneri O (2006) Energy management in fuel cell power trains. Energy Convers Manage 47:3255–3271CrossRefGoogle Scholar
  46. 46.
    Crow DR (1998) Principles and applications of electrochemistry. Stanley Thornes (Publisher) Ltd., CheltenhamGoogle Scholar
  47. 47.
    Mann RF, Amphlett JC, Peppley BA, Thurgood CP (2006) Application of Butler-Volmer equations in the modelling of activation polarization for PEM fuel cells. J Power Sources 161:775–781CrossRefGoogle Scholar
  48. 48.
    Petrii OA, Nazmutdinov RR, Bronshtein MD, Tsirlina GA (2007) Life of the Tafel equation: current understanding and prospects for the second century. Electrochim Acta 52:3493–3504CrossRefGoogle Scholar
  49. 49.
    Gutman EM (2005) Can the Tafel equation be derived from first principles? Corros Sci 47:3086–3096CrossRefGoogle Scholar
  50. 50.
    Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, ChichesterGoogle Scholar
  51. 51.
    Knights SD, Colbow KM, St. Pierre J, Wilkinson DP (2004) Aging mechanisms and lifetime of PEFC and DMFC. J Power Sources 127:127–134CrossRefGoogle Scholar
  52. 52.
    Shao Y, Yin G, Gao Y (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cells. J Power Sources 171:558–566CrossRefGoogle Scholar
  53. 53.
    Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P (1994) Activity and stability of ordered and disordered Co-Pt alloys for phosphoric acid fuel cells. J Electrochem Soc 141:2659–2668CrossRefGoogle Scholar
  54. 54.
    Akita T, Taniguchi A, Maekawa J, Siroma Z, Tanaka K, Kohyama M, Yasuda K (2006) Analytical TEM study of Pt particle deposition in the proton-exchange membrane of a membrane-electrode-assembly. J Power Sources 159:461–467CrossRefGoogle Scholar
  55. 55.
    Zhai Y, Zhang H, Xing D, Shao Z (2007) The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test. J Power Sources 164:126–133CrossRefGoogle Scholar
  56. 56.
    Li W, Lane AM (2009) Investigation of Pt catalytic effects on carbon support corrosion of the cathode catalyst in PEM fuel cells using DEMS spectra. Electrochem Commun 11:1187–1190CrossRefGoogle Scholar
  57. 57.
    Stevens DA, Hicks MT, Haugen GM, Dahn JR (2005) Ex situ and in situ stability studies of PEMFC catalysts. J Electrochem Soc 152:A2309–A2315CrossRefGoogle Scholar
  58. 58.
    Shao YY, Yin GP, Gao YZ, Shi PF (2006) Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. J Electrochem Soc 153:A1093–A1097CrossRefGoogle Scholar
  59. 59.
    Colon-Mercado HR, Popov BN (2006) Stability of platinum based alloy cathode catalysts in PEM fuel cells. J Power Sources 155:253–263Google Scholar
  60. 60.
    Zhang S, yuan XZ, Cheng Hin JN, Wang H (2009) A review of platinum-based catalysts layer degradation in proton exchange membrane fuel cells. J Power Sources 194:588–600CrossRefGoogle Scholar
  61. 61.
    Charreteur F, Jaouen F, Dodelet JP (2009) Iron porphyrin-based cathode catalysts for PEM fuel cells: Influence of pyrolysis gas on activity and stability. Electrochim Acta 54:6622–6630CrossRefGoogle Scholar
  62. 62.
    Oh HS, Lim KH, Roh B, Hwang I, Kim H (2009) Corrosion resistance and sintering effect of carbon support in polymer electrolyte membrane fuel cells. Electrochim Acta 54:6515–6521CrossRefGoogle Scholar
  63. 63.
    Collier A, Wang H, Yuan X, Zhang J, Wilkinson DP (2006) Degradation of polymer electrolyte membranes. Int J Hydrogen Energ 31:1838–1854CrossRefGoogle Scholar
  64. 64.
    Ramani V, Kunz HR, Fenton JM (2005) Stabilized composite membranes and membrane electrode assemblies for elevated temperature/low relative humidity PEFC operation. J Power Sources 152:182–188CrossRefGoogle Scholar
  65. 65.
    Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME (2004) Advanced materials for improved PEMFC performance and life. J Power Sources 131:41–48CrossRefGoogle Scholar
  66. 66.
    Kangasniemi KH, Condit DA, Jarvi TD (2004) Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions. J Electrochem Soc 151:E125–E132CrossRefGoogle Scholar
  67. 67.
    Hiramitsu Y, Sato H, Hosomi H, Aoki Y, Harada T, Sakiyama Y, Nakagawa Y, Kobayashi K, Hori M (2009) Influence of humidification on deterioration of gas diffusivity in catalyst layer on polymer electrolyte fuel cell. J Power Sources 195:435–444CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited  2011

Authors and Affiliations

  • Pasquale Corbo
    • 1
  • Fortunato Migliardini
    • 1
  • Ottorino Veneri
    • 1
  1. 1.Istituto Motori of Italian National Research CouncilNapelsItaly

Personalised recommendations