Skip to main content

Possible Routes Towards Carbon-Free Vehicles

  • Chapter
  • First Online:
Hydrogen Fuel Cells for Road Vehicles

Part of the book series: Green Energy and Technology ((GREEN))

  • 4685 Accesses

Abstract

This chapter analyzes the main energy and environmental issues that justify the present interest towards the development of novel technologies for sustainable means of transportation. The potentialities and limitations of hydrogen fuel cell technology, as alternative solution for efficient and not polluting vehicles, are presented in the context of the most stringent questions to deal with in this field: the scarcity of fossil resources, the necessity of further reductions in current engine emissions to meet the severe incoming legislative limits and the global warming risks related to the green-house effect. A well-to-wheel analysis, effected for different types of vehicles starting from both fossil and renewable primary energy resources, evidences the viable paths in the direction of novel clean technologies for transportation means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Energy Agency (2008) World energy outlook 2008. OECD Publishing, Paris

    Google Scholar 

  2. World Business Council for Sustainable Development (WBCSD). Mobility 2030: meeting the challenges to sustainability. http://www.wbcsd.org/plugins/DocSearch/details.asp?type=DocDet&ObjectId=NjA5NA. Accessed 2 Feb 2010

  3. BP Statistical Review of World Energy June 2008

    Google Scholar 

  4. Askari H, Krichene N (2008) Oil price dynamics (2002–2006). Energ Econ 30(5):2134–2153

    Article  Google Scholar 

  5. Kaufmann RK, Bradford A, Belanger LH, Mclaughlin JP, Miki Y (2008) Determinants of OPEC production: Implications for OPEC behavior. Energ Econ 30:333–351

    Article  Google Scholar 

  6. Wirl F (2008) Why do oil prices jump (or fall)? Energy Policy 36:1029–1043

    Article  Google Scholar 

  7. Hirsch RL (2008) Mitigation of maximum world oil production: Shortage scenarios. Energy policy 36:881–889

    Article  Google Scholar 

  8. Nel WP, Cooper CJ (2008) A critical review of IEA’s oil demand forecast for China. Energy Policy 36:1096–1106

    Article  Google Scholar 

  9. Hubbert MK (1949) Energy from fossils fuels. Science 109:103–109

    Article  Google Scholar 

  10. Hubbert MK (1956) Nuclear energy and the fossil fuels. In: Presented before the Spring Meeting of the Southern District. American Petroleum Institute, Plaza Hotel, San Antonio, Texas, March 7–9, 1956. http://www.hubbertpeak.com/hubbert/1956/1956.pdf. Accessed 02 Feb 2010

  11. Wilkinson P (2008) Peak oil: threat, opportunity or phantom? Public Health 122:664–666

    Article  Google Scholar 

  12. Lea R (2008) The days of cheap oil have gone, but the peak oil theory is far too bleak. Public Health 122:667–668

    Article  Google Scholar 

  13. Meng QY, Bentley RW (2008) Global oil peaking: responding to the case for ‘abundant supplies of oil’. Energy 33:1179–1184

    Article  Google Scholar 

  14. Hanlon P, McCartney G (2008) Peak oil: Will it be public health’s greatest challenge? Public Health 122:647–652

    Article  Google Scholar 

  15. Leder F, Shapiro JN (2008) This time is different: an inevitable decline in world petroleum production will keep oil product prices high, causing military conflicts and shifting wealth and power from democracies to authoritarian regimes. Energy Policy 36(8):2850–2852

    Article  Google Scholar 

  16. Brecha RJ (2008) Emission scenarios in the face of fossil-fuel peaking. Energy Policy 36:3492–3504

    Article  Google Scholar 

  17. Kaufmann RK, Shiers LD (2008) Alternatives to conventional crude oil: when, how quickly, and market driven? Ecol Econ 67(3):405–411

    Article  Google Scholar 

  18. Abu-Jrai A, Rodríguez-Fernández J, Tsolakis A, Megaritis A, Theinnoi K, Cracknell RF, Clark RH (2009) Performance, combustion and emissions of a diesel engine operated with reformed EGR. Comparison of diesel and GTL fuelling. Fuel 88(6):1031–1041

    Article  Google Scholar 

  19. Official Journal of the European Union (2006) L310/15. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:310:0015:0040:EN:PDF. Accessed 02 Feb 2010

  20. Markvart T, Castaner L (2003) Principles of solar cell operation. In: Markvart T, Castaner L (eds) Practical handbook of photovoltaics. Fundamental and applications. Elsevier, Kidlington

    Google Scholar 

  21. Landsberg PT, Markvart T (2003) Ideal efficiencies. In: Markvart T, Castaner L (eds) Practical handbook of photovoltaics. Fundamental and applications. Elsevier, Kidlington

    Google Scholar 

  22. Pro BH, Hammerschlag R, Mazza P (2005) Energy and land use impacts of sustainable transportation scenarios. J Clean Prod 13:1309–1319

    Article  Google Scholar 

  23. Arshadi M, Sellstedt A (2008) Production of energy from biomass. In: Clark J, Deswarte F (eds) Introduction to chemical from biomass. Wiley, Chichester

    Google Scholar 

  24. Abu-Khader MM (2009) Recent advances in nuclear power: a review. Prog Nucl Energy 51(2):225–235

    Article  Google Scholar 

  25. Fthenakis VM, Kim HC (2007) Greenhouse-gas emissions from solar electric- and nuclear power: a life-cycle study. Energy Policy 35:2549–2557

    Article  Google Scholar 

  26. Lenzen M (2008) Life cycle energy and greenhouse gas emissions of nuclear energy: a review. Energy Convers Manage 49:2178–2199

    Article  Google Scholar 

  27. Manheiemr W (2006) Can fusion and fission breeding help civilization survive? J Fusion Energy 25(3/4):121–139

    Article  Google Scholar 

  28. Dean SO (2007) Fusion: pathways to the future. J Fusion Energy 26:283–292

    Article  Google Scholar 

  29. Duffey RB (2005) Sustainable futures using nuclear energy. Prog Nucl Energy 47(1–4):535–543

    Article  Google Scholar 

  30. Lewis D (2008) Hydrogen and its relationship with nuclear energy. Prog Nucl Energy 50:394–401

    Article  Google Scholar 

  31. Hori M (2008) Nuclear energy for transportation: paths through electricity, hydrogen and liquids fuels. Prog Nucl Energy 50:411–416

    Article  Google Scholar 

  32. Forsberg CW (2009) Sustainability by combining nuclear, fossil and renewable energy sources. Prog Nucl Energy 51(1):192–200

    Article  Google Scholar 

  33. Kato Y, Otsuka K, Ryu J (2008) Carbon recycle nuclear hydrogen carrier system for transportation field. Prog Nucl Energy 50:417–421

    Google Scholar 

  34. Kruger P (2006) Alternative energy resources: the quest for sustainable energy. Wiley, Hoboken

    Google Scholar 

  35. Cleveland CJ, Kaufmann RK, Stern DI (2000) Aggregation and the role of energy in the economy. Ecol Econ 32:301–317

    Article  Google Scholar 

  36. Cleveland CJ (2005) Net energy from the extraction of oil and gas in the United States. Energy 30:769–782

    Article  Google Scholar 

  37. Gately M (2007) The EROI of U.S. offshore energy extraction: a net energy analysis of the Gulf of Mexico. Ecol Econ 63:355–364

    Article  Google Scholar 

  38. Faundez P (2008) Renewable energy in a market-based economy: how to estimate its potential and choose the right incentives. Renew Energy 33:1768–1774

    Google Scholar 

  39. Cleveland CJ, Costanza R, Hall CAS, Kaufmann R (1984) Energy and U.S. economy: a biophysical perspective. Science 225:890–897

    Article  Google Scholar 

  40. Heywood JB (1988) Internal combustion engines fundamentals. McGraw-Hill, Singapore

    Google Scholar 

  41. Dabelstein W, Reglitzky A, Schtze A, Reders K (2008) Automotive fuels. In: Elvers B (ed) Handbook of fuels. Wiley-VCH, Weinheim

    Google Scholar 

  42. Yao M, Zheng Z, Liu H (2009) Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Prog Energy Combust 35(5):398–437

    Article  Google Scholar 

  43. Eastwood P (2000) Critical topics in exhaust gas aftertreatment. Research Studies Press Ltd., Baldock, Hertfordshire

    Google Scholar 

  44. Crebelli R, Conti L, Crochi B, Carere A, Bertoli C, Del Giacomo N (1995) The effect of fuel composition on the mutagenicity of diesel engine exhaust. Mutat Res Lett 346(3):167–172

    Article  Google Scholar 

  45. Official Journal of the European Union (2007) L 171/1. http://eur-ex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:171:0001:0016:EN:PDF. Accessed 02 Feb 2010

  46. Official Journal of the European Union (2008) L 199/1. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:199:0001:0136:EN:PDF. Accessed 02 Feb 2010

  47. Turrio-Baldassarri L, Battistelli CL, Conti L, Crebelli R, De Berardis B, Iamiceli AL, Gambino M, Iannaccone S (2006) Evaluation of emission toxicity of urban bus engines: Compressed natural gas and comparison with liquid fuels. Sci Total Environ 355:64–77

    Article  Google Scholar 

  48. Field CB, Campbell JE, Lobell DB (2007) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23(2):65–72

    Article  Google Scholar 

  49. Schuers A, Abel A, Artmann R, Fickel X, Preis M (2002) 12-cylinder hydrogen engine in the BMW 750hL. Motortechnische Zeitschrift 63(2):98–105. http://www.bmw.com/com/en/insights/technology/efficient_dynamics/phase_2/clean_energy/bmw_hydrogen_7.html. Accessed 02 Feb 2010

    Google Scholar 

  50. Intergovernmental Panel on Climate Change (2007–2008) Fourth assessment report: climate change 2007. Cambridge University Press, Cambridge

    Google Scholar 

  51. Gerard D, Wilson EJ (2009) Environmental bonds and the challenge of long-term carbon sequestration. J Environ Manage 90:1097–1105

    Article  Google Scholar 

  52. Ahman M (2001) Primary energy efficiency of alternative powertrains in vehicles. Energy 26:973–989

    Article  Google Scholar 

  53. Rand DAJ, Dell RM (2005) The hydrogen economy: a threat or an opportunity for lead-acid batteries? J Power Sources 144:568–578

    Article  Google Scholar 

  54. Van Mierlo J, Maggetto G, Lataire P (2006) Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles. Energy Convers Manage 47:2748–2760

    Article  Google Scholar 

  55. Vallentyne J (1965) Net primary productivity and photosynthetic efficiency in the biosphere. In: Goldman C (ed) Primary productivity in aquatic environments. University of California Press, Berkeley

    Google Scholar 

  56. Jorgensen K (2008) Technologies for electric, hybrid and hydrogen vehicles: electricity from renewable energy sources in transport. Util Policy 16:72–79

    Article  Google Scholar 

  57. Linden D, Reddy TB (2001) Handbook of batteries, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  58. Yang S, Knickle H (2002) Design and analysis of aluminium/air battery system for electric vehicles. J Power Sources 112:162–173

    Article  Google Scholar 

  59. Li Q, Bjerrum NJ (2002) Aluminium as anode for energy storage and conversion: a review. J Power Sources 110:1–10

    Article  MATH  Google Scholar 

  60. Chan CC, Sun L, Liang R, Wang Q (2007) Current status and future trends of energy storage system for electric vehicles. J Asian Electr Veh 5(2):1055–1060

    Article  Google Scholar 

  61. Chan CC (2004) The state of the art of electric vehicles. J Asian Electr Veh 2(2):579–600

    Article  Google Scholar 

  62. Chalk SG, Miller JF (2006) Key challenges and recent progress in batteries, fuel cells and hydrogen storage for clean energy systems. J Power Sources 159:73–80

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Corbo .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Corbo, P., Migliardini, F., Veneri, O. (2011). Possible Routes Towards Carbon-Free Vehicles. In: Hydrogen Fuel Cells for Road Vehicles. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-136-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-136-3_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-135-6

  • Online ISBN: 978-0-85729-136-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics