Advertisement

Gait Representations in Video

  • Bir Bhanu
  • Ju Han
Part of the Advances in Pattern Recognition book series (ACVPR)

Abstract

In this chapter, we first present a spatio-temporal gait representation, called gait energy image (GEI), to characterize human walking properties. Next, a general GEI-based framework is developed to deal with human motion analysis under different situations. The applications of this general framework will be discussed in the next chapter.

Keywords

Human Motion Gait Feature Human Activity Recognition Human Walking Gait Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 9.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997) CrossRefGoogle Scholar
  2. 10.
    BenAbdelkader, C., Cutler, R., Davis, L.: Motion-based recognition of people in EigenGait space. In: Proceedings of International Conference on Automatic Face and Gesture Recognition, pp. 254–259 (2002) Google Scholar
  3. 11.
    BenAbdelkader, C., Cutler, R., Davis, L.: Person identification using automatic height and stride estimation. In: Proceedings of International Conference on Pattern Recognition, vol. 4, pp. 377–380 (2002) Google Scholar
  4. 21.
    Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001) CrossRefGoogle Scholar
  5. 23.
    Boulgouris, N.V., Chi, Z.X.: Gait recognition using radon transform and linear discriminant analysis. IEEE Trans. Image Process. 16(3), 731–740 (2007) MathSciNetCrossRefGoogle Scholar
  6. 24.
    Boulgouris, N.V., Plataniotis, K.N., Hatzinakos, D.: Gait recognition using linear time normalization. Pattern Recognit. 39(5), 969–979 (2006) MATHCrossRefGoogle Scholar
  7. 28.
    Chen, C., Liang, J., Zhao, H., Hu, H., Tian, J.: Factorial HMM and parallel HMM for gait recognition. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 39(1), 114–123 (2009) CrossRefGoogle Scholar
  8. 32.
    Collins, R.T., Gross, R., Shi, J.: Silhouette-based human identification from body shape and gait. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 351–356 (2002) Google Scholar
  9. 39.
    Davis, J.: Sequential reliable-inference for rapid detection of human actions. In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 111–118 (2004) Google Scholar
  10. 46.
    Fujiyoshi, H., Lipson, A.J.: Real-time human motion analysis by image skeletonization. In: Proceedings of 4th IEEE Workshop on Applications of Computer Vision, pp. 15–21 (1998) Google Scholar
  11. 56.
    Guo, Y., Tsuji, S.: Understanding human motion patterns. In: Proceedings of the International Conference Pattern Recognition, vol. 2, pp. 325–329 (1994) Google Scholar
  12. 59.
    Han, J., Bhanu, B.: Statistical feature fusion for gait-based human recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 842–847 (2004) Google Scholar
  13. 65.
    He, Q., Debrunner, C.: Individual recognition from periodic activity using hidden Markov models. In: Proceedings of IEEE Workshop on Human Motion, pp. 47–52 (2000) Google Scholar
  14. 72.
    Huang, P.S., Harris, C.J., Nixon, M.S.: Recognizing humans by gait via parametric canonical space. Artif. Intell. Eng. 13, 359–366 (1999) CrossRefGoogle Scholar
  15. 82.
    Kale, A., Rajagopalan, A.N., Cuntoor, N., Kruger, V.: Gait-based recognition of humans using continuous HMMs. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 321–326 (2002) Google Scholar
  16. 83.
    Kale, A., Cuntoor, N., Yegnanarayana, B., Rajagopalan, A.N., Chellappa, R.: Gait analysis for human identification. In: Proceedings of fourth International Conference on Audio- and Video-Based Biometric Person Authentication. LNCS, vol. 2688, pp. 706–714. Springer, Berlin (2003) CrossRefGoogle Scholar
  17. 85.
    Kale, A., Sundaresan, A., Rajagopalan, A.N., Cuntoor, N.P., Roy-Chowdhury, A.K., Kruger, V., Chellappa, R.: Identification of humans using gait. IEEE Trans. Image Process. 13(9), 1163–1173 (2004) CrossRefGoogle Scholar
  18. 94.
    Lam, T.H.W., Lee, R.S.T., Zhang, D.: Human gait recognition by the fusion of motion and static spatio-temporal templates. Percept. Psychophys. 40(9), 2563–2573 (2007) MATHGoogle Scholar
  19. 96.
    Lee, L., Grimson, W.E.L.: Gait analysis for recognition and classification. In: Proceedings of fifth International Conference on Automatic Face and Gesture Recognition, pp. 148–155 (2002) Google Scholar
  20. 104.
    Li, X., Lin, S., Yan, S., Xu, D.: Discriminant locally linear embedding with high-order tensor data. IEEE Trans. Syst. Man Cybern., Part B 38(2), 342–352 (2008) CrossRefGoogle Scholar
  21. 107.
    Little, J.J., Boyd, J.E.: Recognizing people by their gait: the shape of motion. Videre, J. Comput. Vis. Res. 1(2), 1–32 (1998) Google Scholar
  22. 108.
    Liu, Z., Sarkar, S.: Improved gait recognition by gait dynamics normalization. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 863–876 (2006) CrossRefGoogle Scholar
  23. 111.
    Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: MPCA: multilinear principal component analysis of tensor objects. IEEE Trans. Neural Netw. 19(1), 18–39 (2008) CrossRefGoogle Scholar
  24. 112.
    Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: Uncorrelated multilinear discriminant analysis with regularization and aggregation for tensor object recognition. IEEE Trans. Neural Netw. 20(1), 103–123 (2009) CrossRefGoogle Scholar
  25. 118.
    Murase, H., Sakai, R.: Moving object recognition in eigenspace representation: gait analysis and lip reading. Pattern Recognit. Lett. 17(2), 155–62 (1996) CrossRefGoogle Scholar
  26. 126.
    Niyogi, S.A., Adelson, E.H.: Analyzing and recognizing walking figures in XYT. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 469–474 (1994) Google Scholar
  27. 137.
    Phillips, P.J., Sarkar, S., Robledo, I., Grother, P., Bowyer, K.: The gait identification challenge problem: data sets and baseline algorithm. In: Proceedings of International Conference on Pattern Recognition, vol. 1, pp. 385–388 (2002) Google Scholar
  28. 139.
    Polana, R., Nelson, R.: Low level recognition of human motion (or how to get your man without finding his body parts). In: Proceedings of IEEE Workshop on Motion of Non-Rigid and Articulated Objects, pp. 77–82 (1994) Google Scholar
  29. 141.
    Rajagopalan, A.N., Chellappa, R.: Higher-order spectral analysis of human motion. In: Proceedings of International Conference on Image Processing, vol. 3, pp. 230–233 (2000) Google Scholar
  30. 149.
    Sappa, A.D., Aifanti, N., Malassiotis, S., Strintzis, M.G.: Unsupervised motion classification by means of efficient feature selection and tracking. In: Proceedings of International Symposium on 3D Data Processing, Visualization and Transmission, pp. 912–917 (2000) Google Scholar
  31. 150.
    Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanid gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 162–177 (2005) CrossRefGoogle Scholar
  32. 152.
    Seely, R.D., Samangooei, S., Middleton, L., Carter, J.N., Nixon, M.S.: The University of Southampton multi-biometric tunnel and introducing a novel 3d gait dataset. In: Proceedings of International Conference on Biometrics: Theory, Applications and Systems, pp. 1–6 (2008) Google Scholar
  33. 156.
    Shutler, J.D., Nixon, M.S., Harris, C.J.: Statistical gait recognition via velocity moments. In: Proceedings of IEE Colloquium on Visual Biometrics, pp. 10/1–10/5 (2000) Google Scholar
  34. 159.
    Sundaresan, A., RoyChowdhury, A., Chellappa, R.: A hidden Markov model based framework for recognition of humans from gait sequences. In: Proceedings of International Conference on Image Processing, vol. 2, pp. 93–96 (2003) Google Scholar
  35. 160.
    Tanawongsuwan, R., Bobick, A.: Gait recognition from time-normalized joint-angle trajectories in the walking plane. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 726–731 (2001) Google Scholar
  36. 161.
    Tao, D., Li, X., Wu, X., Maybank, S.: Human carrying status in visual surveillance. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, vol. 2, pp. 1670–1677 (2006) Google Scholar
  37. 162.
    Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discriminant analysis and Gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007) CrossRefGoogle Scholar
  38. 166.
    Tolliver, D., Collins, R.T.: Gait shape estimation for identification. In: Proceedings of fourth International Conference on Audio- and Video-Based Biometric Person Authentication. LNCS, vol. 2688, pp. 734–742 (2003) Google Scholar
  39. 172.
    Vega, I.R., Sarkar, S.: Statistical motion model based on the change of feature relationships: human gait-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1323–1328 (2003) CrossRefGoogle Scholar
  40. 180.
    Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003) CrossRefGoogle Scholar
  41. 181.
    Wang, L., Ning, H., Tan, T., Hu, W.: Fusion of static and dynamic body biometrics for gait recognition. IEEE Trans. Circuits Syst. Video Technol. 14(2), 149–158 (2004) CrossRefGoogle Scholar
  42. 184.
    Xu, D., Yan, S., Tao, D., Zhang, L., Li, X., Zhang, H.-J.: Human gait recognition with matrix representation. IEEE Trans. Circuits Syst. Video Technol. 16(7), 896–903 (2006) CrossRefGoogle Scholar
  43. 185.
    Xu, D., Yan, S., Tao, D., Zhang, L., Li, X., Zhang, H.-J.: Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval. IEEE Trans. Image Process. 16(11), 2811–2821 (2007) MathSciNetCrossRefGoogle Scholar
  44. 193.
    Yoo, J.-H., Nixon, M.S., Harris, C.J.: Model-driven statistical analysis of human gait motion. In: Proceedings of IEEE International Conference on Image Processing, vol. 1, pp. 285–288 (2002) Google Scholar
  45. 202.
    Zhang, R., Vogler, C., Metaxas, D.: Human gait recognition at sagittal plane. Image Vis. Comput. 25(3), 321–330 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.Bourns College of EngineeringUniversity of CaliforniaRiversideUSA
  2. 2.Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations