Reliability of Semi-Markov Systems

  • M. Luz Gámiz
  • K. B. Kulasekera
  • Nikolaos Limnios
  • Bo Henry Lindqvist
Part of the Springer Series in Reliability Engineering book series (RELIABILITY)


The purpose of this chapter is to present the reliability analysis of semi-Markov systems. The underconsideration semi-Markov processes are both of continuous and discrete time with countable or finite state space and of general state space. The basic definitions of Markov renewal and semi-Markov processes are presented, as well as the Markov renewal theorem and the basic statistical estimation theory. We describe a general reliability model and give corresponding estimators and their properties.


Renewal Process Sojourn Time Empirical Estimator Embed Markov Chain General State Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aalen O, Borgan O, Gjessing H (2008) Survival and event history analysis. Springer, New YorkMATHCrossRefGoogle Scholar
  2. 2.
    Akritas MG, Roussas GG (1980) Asymptotic inference in continuous time semi-Markov processes. Scand J Stat 7:73–79MATHMathSciNetGoogle Scholar
  3. 3.
    Anisimov VV (2008) Switching processes in queueing models. ISTE–J. Wiley, Applied Stochastic Methods Series, LondonGoogle Scholar
  4. 4.
    Asmussen S (1987) Applied probability and queues. Wiley, ChichesterMATHGoogle Scholar
  5. 5.
    Aven T, Jensen U (1999) Stochastic models in reliability. Springer, New YorkMATHCrossRefGoogle Scholar
  6. 6.
    Barbu V, Limnios N (2008) Semi-Markov chains and hidden semi-Markov models. Toward applications. Their use in reliability and DNA analysis. Lecture notes in statistics, vol 191. Springer, New YorkGoogle Scholar
  7. 7.
    Barbu V, Limnios N (2010) Some algebraic methods in semi-Markov chains. Contemp Math AMS 516:19–35MathSciNetGoogle Scholar
  8. 8.
    Barlow RE, Prochan F (1975) Statistical theory of reliability and life testing: probability models. Holt, Rinehart and Winston, New YorkGoogle Scholar
  9. 9.
    Chiquet J, Limnios N (2008) A method to compute the reliability of a piecewise deterministic Markov process. Stat Probab Lett 78:1397–1403MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chryssaphinou O, Karaliopoulou M, Limnios N (2008) On discrete time semi-Markov chains and applications in words occurrences. Commun Stat Theory Methods 37:1306–1322MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Çinlar E (1969) Markov renewal theory. Adv Appl Probab 1:123–187MATHCrossRefGoogle Scholar
  12. 12.
    Çinlar E (1975) Introduction to stochastic processes. Prentice-Hall, Englewood CliffsGoogle Scholar
  13. 13.
    Cox DR (1955) The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables. Proc Camb Philos Soc 51:433–441MATHCrossRefGoogle Scholar
  14. 14.
    Csenki A (1995) Dependability for systems with a partitioned state space. Lecture notes in statistics, vol 90. Springer, BerlinGoogle Scholar
  15. 15.
    Devooght J (1997) Dynamic reliability. Adv Nucl Sci Technol 25:215–278CrossRefGoogle Scholar
  16. 16.
    Esary JD, Marshal AW, Proschan F (1973) Shock models and wear processes. Ann Probab 1:627–649MATHCrossRefGoogle Scholar
  17. 17.
    Feller W (1964) On semi-Markov processes. Proc Natl Acad Sci USA 51(2):653–659MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Gertsbakh I (2000) Reliability theory—with applications to preventive maintenance. Springer, BerlinMATHGoogle Scholar
  19. 19.
    Gikhman II, Skorokhod AV (1974) Theory of stochastic processes, vol 2. Springer, BerlinMATHGoogle Scholar
  20. 20.
    Gill RD (1980) Nonparametric estimation based on censored observations of a Markov renewal process. Z Wahrsch verw Gebiete 53:97–116MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Girardin V, Limnios N (2006) Entropy for semi-Markov processes with Borel state spaces: asymptotic equirepartition properties and invariance principles. Bernoulli 12(3):515–533MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Greenwood PE, Wefelmeyer W (1996) Empirical estimators for semi-Markov processes. Math Methods Stat 5(3):299–315MATHMathSciNetGoogle Scholar
  23. 23.
    Grigorescu S, Oprişan G (1976) Limit theorems for J-X processes with a general state space. Z Wahrsch verw Gebiete 35:65–73MATHCrossRefGoogle Scholar
  24. 24.
    Gyllenberg M, Silvestrov DS (2008) Quasi-stationary phenomena in nonlinearly perturbed stochastic systems. de Gruyter, BerlinCrossRefGoogle Scholar
  25. 25.
    Harlamov BP (2008) Continuous semi-Markov processes. ISTE–J. Applied Stochastic Methods Series, Wiley, LondonGoogle Scholar
  26. 26.
    Huzurbazar AV (2004) Flowgraph models for multistate time-to-event data. Wiley, New YorkCrossRefGoogle Scholar
  27. 27.
    Iosifescu M, Limnios N, Oprişan G (2010) Introduction to stochastic models. Iste, Wiley, LondonMATHGoogle Scholar
  28. 28.
    Janssen J (ed) (1986) Semi-Markov models. Theory and applications. Plenum Press, New YorkGoogle Scholar
  29. 29.
    Janssen J, Limnios N (eds) (1999) Semi-Markov models and applications. Kluwer, DordrechtMATHGoogle Scholar
  30. 30.
    Janssen J, Manca R (2006) Applied semi-Markov processes. Springer, New YorkMATHGoogle Scholar
  31. 31.
    Keilson J (1979) Markov chains models—rarity and exponentiality. Springer, New YorkGoogle Scholar
  32. 32.
    Korolyuk VS, Limnios N (2004) Average and diffusion approximation for evolutionary systems in an asymptotic split phase space. Ann Appl Probab 14(1):489–516MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Korolyuk VS, Limnios N (2005) Stochastic systems in merging phase space. World Scientific, SingaporeCrossRefGoogle Scholar
  34. 34.
    Korolyuk VS, Turbin AF (1993) Mathematical foundations of the state lumping of large systems. Kluwer, DordrechtMATHGoogle Scholar
  35. 35.
    Korolyuk VS, Swishchuk A (1995) Semi-Markov random evolution. Kluwer, DordrechtGoogle Scholar
  36. 36.
    Kovalenko IN, Kuznetsov NYu, Pegg PA (1997) Mathematical theory of reliability of time dependent systems with practical applications. Wiley, ChichesterMATHGoogle Scholar
  37. 37.
    Lagakos SW, Sommer CJ, Zelen M (1978) Semi-Markov models for partially censored data. Biometrika 65(2):311–317MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Limnios N (2004) A functional central limit theorem for the empirical estimator of a semi-Markov kernel. J Nonparametr Stat 16(1–2):13–18MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Limnios N (2006) Estimation of the stationary distribution of semi-Markov processes with Borel state space. Stat Probab Lett 76:1536–1542MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Limnios N (2010) Semi-Markov processes and hidden models, EORMS Encyclopedia of operation research and management science. Wiley, New YorkGoogle Scholar
  41. 41.
    Limnios N (2011) Reliability measures of semi-Markov systems with general state space. Methodology and Computing in Applied Probability,  doi: 10.1007/s11009-011-9211-5
  42. 42.
    Limnios N, Nikulin M (eds) (2000) Recent advances in reliability theory: methodology, practice and inference. Birkhäuser, BostonMATHGoogle Scholar
  43. 43.
    Limnios N, Oprişan G (2001) Semi-Markov processes and reliability. Birkhäuser, BostonMATHGoogle Scholar
  44. 44.
    Limnios N, Ouhbi B (2003) Empirical estimators of reliability and related functions for semi-Markov systems. In: Lindqvist B, Doksum K (eds) Mathematical and statistical methods in reliability. World Scientific, SingaporeGoogle Scholar
  45. 45.
    Limnios N, Ouhbi B (2006) Nonparametric estimation of some important indicators in reliability for semi-Markov processes. Stat Methodol 3(4):341–350CrossRefMathSciNetGoogle Scholar
  46. 46.
    Lisnianski A, Levitin G (2003) Multi-state system reliability. World Scientific, SingaporeMATHGoogle Scholar
  47. 47.
    Moore EH, Pyke R (1968) Estimation of the transition distributions of a Markov renewal process. Ann Inst Stat Math 20:411–424MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Osaki S (1985) Stochastic system reliability modeling. World Scientific, SingaporeMATHGoogle Scholar
  49. 49.
    Ouhbi B, Limnios N (1999) Nonparametric estimation for semi-Markov processes based on its hazard rate functions. Stat Inference Stoch Process 2(2):151–173MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Ouhbi B, Limnios N (2003) Nonparametric reliability estimation of semi-Markov processes. J Stat Plann Inference 109(1/2):155–165MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Ouhbi B, Limnios N (2002) The rate of occurrence of failures for semi-Markov processes and estimation. Stat Probab Lett 59(3):245–255MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Pérez-Ocón R, Torres-Castro I (2002) A reliability semi-Markov model involving geometric processes. Appl Stoch Models Bus Ind 18:157–70MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Prabhu NU (1980) Stochastic storage processes. Springer, BerlinMATHGoogle Scholar
  54. 54.
    Pyke R (1961) Markov renewal processes: definitions and preliminary properties. Ann Math Stat 32:1231–1242MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Pyke R (1961) Markov renewal processes with finitely many states. Ann Math Stat 32:1243–1259CrossRefMathSciNetGoogle Scholar
  56. 56.
    Pyke R, Schaufele R (1964) Limit theorems for Markov renewal processes. Ann Math Stat 35:1746–1764MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Pyke R, Schaufele R (1967) The existence and uniqueness of stationary measures for Markov renewal processes. Ann Stat 37:1439–1462MathSciNetGoogle Scholar
  58. 58.
    Revuz D (1975) Markov chains. North-Holland, AmsterdamMATHGoogle Scholar
  59. 59.
    Ross SM (1970) Applied probability models with optimization applications. Holden-Day, San FranciscoMATHGoogle Scholar
  60. 60.
    Shurenkov VM (1984) On the theory of Markov renewal. Theory Probab Appl 29:247–265CrossRefMathSciNetGoogle Scholar
  61. 61.
    Silvestrov DS (1996) Recurrence relations for generalized hitting times for semi-Markov processes. Ann Appl Probab 6(2):617–649MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Trevezas S, Limnios N (2009) Maximum likelihood estimation for general hidden semi-Markov processes with backward recurrence time dependence. In: Notes of scientific seminars of the St. Petersburg Department of the Steklov Mathematical Institute, Russian Academy of Sciences, vol 363, pp 105–125, and J Math Sci, special issue in honor of I. IbragimovGoogle Scholar
  63. 63.
    Wilson A, Limnios N, Keller-McNulty S, Armijo Y (eds) (2005) Modern statistical and mathematical methods in reliability. Series on quality, reliability, engineering statistics. World Scientific, SingaporeGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • M. Luz Gámiz
    • 1
  • K. B. Kulasekera
    • 2
  • Nikolaos Limnios
    • 3
  • Bo Henry Lindqvist
    • 4
  1. 1.Facultad Ciencias, Depto. Estadistica e Investigacion OperativaUniversidad GranadaGranadaSpain
  2. 2.Department of Mathematical SciencesClemson UniversityClemsonUSA
  3. 3.Centre de Recherches de Royallieu, Laboratoire de Mathématiques AppliquéesUniversité de Technologie de CompiègneCompiègneFrance
  4. 4.Department of Mathematical SciencesNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations