Skip to main content

Models for Perfect Repair

  • Chapter
  • First Online:
Applied Nonparametric Statistics in Reliability

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 1880 Accesses

Abstract

In this chapter, we begin with the study of repairable systems. Specifically, we study probabilistic models for systems which after failure are replaced by a new one exactly. We say then that the system operating state is restored to “as good as new” conditions after failure. In the first approach to this kind of systems, we assume that the system is repaired (replaced) and put into new operation immediately after the failure. The sample information that we analyze consist of a sequence of random variables independent and identically distributed, which represent the time between two consecutive failures. The model that we consider in this situation is a Renewal Process, and the main purpose is to present and compare several ways of nonparametrically estimate the renewal function, that is, the expected number of failures occurring in the system up to a given time t. When the repair times are of interest, the data collected consist of a sequence of alternating up and down periods. The modeling tool indicated in this case is the Alternating Renewal Process, and we will concentrate on estimating the availability function (the probability that the system is functioning at a given time) using nonparametric techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes one may let “operating time” be the time parameter; or possibly “number of cycles” or “number of kilometers” (for cars). Then, repair times are 0 in these time axes.

References

  1. Ananda MMA (1999) Estimation and testing of availability of a parallel system with exponential failure and repair times. J Stat Plan Inf 77:237–246

    Article  MATH  Google Scholar 

  2. Ascher H, Feingold H (1984) Repairable systems reliability: modelling, inference, misconceptions and their causes. Marcel Dekker Inc, New York

    Google Scholar 

  3. Barlow RE, Proschan F (1975) Statistical theory of reliability and life testing. Probability Models. Holt, Rinehart and Winston, New York

    Google Scholar 

  4. Bernardara P, De Michele C, Rosso R (2007) A simple model of rain in time: an alternating renewal process of wet and dry states with a fractional (non-Gaussian) rain intensity. Atmos Res 84:291–301

    Article  Google Scholar 

  5. Brown M, Solomon H, Stevens MA (1981) Monte-Carlo simulation of the renewal function. J Appl Probab 13:426–434

    Article  Google Scholar 

  6. Cao R (1993) Bootstrapping the mean integrated squared error. J Multivar Anal 45:137–160

    Google Scholar 

  7. Chen C-T, Yuan J (2003) Throughput analysis using alternating renewal process in balanced serial production lines with no interstage buffers. J Chin Insst Ind Eng 20(5):522–532

    Article  Google Scholar 

  8. Claasen SJ, Joubert JW, Yadavalli VSS (2004) Interval estimation of the availability of a two unit standby system with non instantaneous switch over and ‘dead time’. Pak J Stat 20(1):115–122

    MATH  MathSciNet  Google Scholar 

  9. Di Crescenso A (2001) On random motions with velocities alternating at Erlang-distributed random times. Adv Appl Probab 33(3):690–701

    Article  MathSciNet  Google Scholar 

  10. Dickey JM (1991) The renewal function for an alternating renewal process, which has a Weibull failure distribution and a constant repair time. Reliab Eng Syst Saf 31:321–343

    Article  MATH  Google Scholar 

  11. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  MATH  MathSciNet  Google Scholar 

  12. Feller W (1971) An introduction to probability theory and its applications, vol II, 2nd edn. Willey, New York

    MATH  Google Scholar 

  13. Frees EW (1986a) Warranty analysis and renewal function estimation. Naval Res Logist Quart 33:361–372

    Article  MATH  Google Scholar 

  14. Frees EW (1986b) Nonparametric renewal function estimation. Ann Stat 14(4):1366–1378

    Article  MathSciNet  Google Scholar 

  15. From SG, Li L (2003) Nonparametric estimation of some quantities of interest from renewal theory. Naval Res Logist 50(6):638–649

    Article  MATH  MathSciNet  Google Scholar 

  16. Gámiz ML, Román Y (2008) Non-parametric estimation of the availability in a general repairable system. Reliab Eng Syst Saf 93:1188–1196

    Article  Google Scholar 

  17. Gerstbakh I, Shpungin Y (2004) Renewal function and interval availability: a numerical Monte Carlo study. Commun Stat Theory Methods 33(3):639–649

    Article  MathSciNet  Google Scholar 

  18. González-Manteiga W, Cao R, Marron JS (1996) Bootstrap selection of the smoothing parameter in nonparametric hazard rate estimation. J Am Stat Assoc 91(435):1130–1140

    Article  MATH  MathSciNet  Google Scholar 

  19. Grübel R, Pitts SM (1993) Nonparametric estimation in renewal theory I: the empirical renewal function. Ann Stat 21(3):1431–1451

    Article  MATH  MathSciNet  Google Scholar 

  20. Guillamón A, Navarro J, Ruiz JM (1999) A note on kernel estimators for positive valued random variables. Sankhya: Indian J Stat 61 Ser A (Part 2):276–281

    Google Scholar 

  21. Hansen BE (2004) Bandwidth selection for nonparametric distribution estimation. Discussion paper, University of Wisconsin, Madison

    Google Scholar 

  22. Hwan Cha J, Sangyeol L, Jongwoo J (2006) Sequential confidence interval estimation for system availability. Qual Reliab Eng Int 22:165–176

    Article  Google Scholar 

  23. Jones MC (1990) The performance of kernel density functions in kernel distribution function estimation. Stat Probab Lett 9:129–132

    Article  MATH  MathSciNet  Google Scholar 

  24. Jones MC, Sheather SJ (1991) Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives. Stat Probab Lett 11:511–514

    Article  MATH  MathSciNet  Google Scholar 

  25. Ke JC, Chu YK (2007) Nonparametric analysis on system availability: confidence bound and power function. J Math Stat 3(4):181–187

    Article  MathSciNet  Google Scholar 

  26. Kijima M (1989) Some results for repairable systems with general repair. J Appl Probab 26(1):89–102

    Google Scholar 

  27. Kumar UD, Crocker J, Chitra T, Saranga H (2006) Reliability and six sigma. Springer, New York

    MATH  Google Scholar 

  28. Marcorin AJ, Abackerli AJ (2006) Field failure data: an alternative proposal for reliability estimation. Qual Reliab Eng Int 22:851–862

    Article  Google Scholar 

  29. Markovich NM (2004) Nonparametric renewal function estimation and smoothing by empirical data. Preprint ETH, Zuerich

    Google Scholar 

  30. Markovich NM, Krieger UR (2006) Nonparametric estimation of the renewal function by empirical data. Stoch Models 22:175–199

    Article  MATH  MathSciNet  Google Scholar 

  31. Mortensen RE (1990) Alternating renewal process models for electric power system loads. IEEE Trans Autom Control 35(11):1245–1249

    Article  Google Scholar 

  32. Mugdadi AR, Ghebregiorgis GS (2005) The Kernel distribution estimator of functions of random variables. Nonparametr Stat 17(7):807–818

    Article  MATH  MathSciNet  Google Scholar 

  33. Pham Gia T, Turkkan N (1999) System availability in a gamma alternating renewal process. Naval Res Logist 46:822–844

    Article  MATH  MathSciNet  Google Scholar 

  34. Phillips MJ (2000) Bootstrap confidence regions for the expected ROCOF of a repairable system. IEEE Trans Reliab 49(2):204–208

    Article  Google Scholar 

  35. Phillips MJ (2001) Estimation of the expected ROCOF of a repairable system with bootstrap confidence region. Qual Reliab Eng Int 17:159–162

    Article  Google Scholar 

  36. Rausand M, Hoyland A (2004) System reliability theory: models, statistical methods and applications, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  37. Ross SM (1992) Applied probability models with optimization applications. Courier Dover Publications, New York

    MATH  Google Scholar 

  38. Ruckdeschel P, Kohl M, Stabla T, Camphausen F (2006) S4 classes for distributions. R News 6(2):2–6. http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/distr.pdf

    Google Scholar 

  39. Schneider H, Lin B-S, O’Cinneide C (1990) Comparison of nonparametric estimation for the renewal function. Appl Stat 39(1):55–61

    Article  MATH  MathSciNet  Google Scholar 

  40. Vanderperre EJ, Makhanov SS (2008) Point availability of a robot with internal safety device. Contemp Eng Sci 1(1):15–25

    Google Scholar 

Download references

Acknowledgments

Section 2.3 of this chapter is an extension into book-length form of the article Nonparametric estimation of the availability in a general repairable system, originally published in Reliability Engineering and System Safety93 (8), 1188–11962 (2008).

The authors express their full acknowledgement of the original publication of the paper in the journal cited above, edited by Elsevier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Luz Gámiz .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gámiz, M.L., Kulasekera, K.B., Limnios, N., Lindqvist, B.H. (2011). Models for Perfect Repair. In: Applied Nonparametric Statistics in Reliability. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-118-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-118-9_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-117-2

  • Online ISBN: 978-0-85729-118-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics